BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30196349)

  • 1. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells.
    Willmann W; Dringen R
    Neurochem Res; 2018 Nov; 43(11):2055-2071. PubMed ID: 30196349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.
    Petters C; Thiel K; Dringen R
    Nanotoxicology; 2016; 10(3):332-42. PubMed ID: 26287375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles.
    Geppert M; Hohnholt MC; Nürnberger S; Dringen R
    Acta Biomater; 2012 Oct; 8(10):3832-9. PubMed ID: 22750736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells.
    Luther EM; Petters C; Bulcke F; Kaltz A; Thiel K; Bickmeyer U; Dringen R
    Acta Biomater; 2013 Sep; 9(9):8454-65. PubMed ID: 23727247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models.
    Sun Z; Yathindranath V; Worden M; Thliveris JA; Chu S; Parkinson FE; Hegmann T; Miller DW
    Int J Nanomedicine; 2013; 8():961-70. PubMed ID: 23494517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells.
    Petters C; Bulcke F; Thiel K; Bickmeyer U; Dringen R
    Neurochem Res; 2014 Feb; 39(2):372-83. PubMed ID: 24368627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells.
    Wu X; Tan Y; Mao H; Zhang M
    Int J Nanomedicine; 2010 Aug; 5():385-99. PubMed ID: 20957160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells.
    Neshastehriz A; Khosravi Z; Ghaznavi H; Shakeri-Zadeh A
    Radiat Environ Biophys; 2018 Nov; 57(4):405-418. PubMed ID: 30203233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage functionality and homeostasis in response to oligoethyleneglycol-coated IONPs: Impact of a dendritic architecture.
    Casset A; Jouhannaud J; Garofalo A; Spiegelhalter C; Nguyen DV; Felder-Flesch D; Pourroy G; Pons F
    Int J Pharm; 2019 Feb; 556():287-300. PubMed ID: 30557682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling.
    Soenen SJ; Nuytten N; De Meyer SF; De Smedt SC; De Cuyper M
    Small; 2010 Apr; 6(7):832-42. PubMed ID: 20213651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas.
    Dyawanapelly S; Jagtap DD; Dandekar P; Ghosh G; Jain R
    Colloids Surf B Biointerfaces; 2017 Jun; 154():408-420. PubMed ID: 28388527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles.
    Soenen SJ; De Smedt SC; Braeckmans K
    Contrast Media Mol Imaging; 2012; 7(2):140-52. PubMed ID: 22434626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxide nanoparticles modulate lipopolysaccharide-induced inflammatory responses in primary human monocytes.
    Grosse S; Stenvik J; Nilsen AM
    Int J Nanomedicine; 2016; 11():4625-4642. PubMed ID: 27695322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration of Nucleocapsids in Vesicular Stomatitis Virus-Infected Cells Is Dependent on both Microtubules and Actin Filaments.
    Yacovone SK; Smelser AM; Macosko JC; Holzwarth G; Ornelles DA; Lyles DS
    J Virol; 2016 Jul; 90(13):6159-70. PubMed ID: 27122580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling.
    Joris F; Valdepérez D; Pelaz B; Wang T; Doak SH; Manshian BB; Soenen SJ; Parak WJ; De Smedt SC; Raemdonck K
    Acta Biomater; 2017 Jun; 55():204-213. PubMed ID: 28373085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Modal Visualization of Uptake and Distribution of Iron Oxide Nanoparticles in Macrophages, Cancer Cells, and Xenograft Models.
    Liu Q; Huang J; Feng Q; Zhang T; Chen X; Li X; Liu X; Li H; Zhong Z; Xiao K
    J Biomed Nanotechnol; 2019 Aug; 15(8):1801-1811. PubMed ID: 31219008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.