These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 30196460)

  • 41. Metabolic responses of weeping willows to selenate and selenite.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):510-7. PubMed ID: 18062484
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium.
    Guarino F; Miranda A; Castiglione S; Cicatelli A
    Chemosphere; 2020 Jul; 251():126310. PubMed ID: 32443249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation in selenium tolerance and accumulation among 19 Arabidopsis thaliana accessions.
    Zhang L; Ackley AR; Pilon-Smits EA
    J Plant Physiol; 2007 Mar; 164(3):327-36. PubMed ID: 16513208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Global leaf and root transcriptome in response to cadmium reveals tolerance mechanisms in Arundo donax L.
    Santoro DF; Sicilia A; Testa G; Cosentino SL; Lo Piero AR
    BMC Genomics; 2022 Jun; 23(1):427. PubMed ID: 35672691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (
    Romero-Munar A; Baraza E; Gulías J; Cabot C
    Front Plant Sci; 2019; 10():843. PubMed ID: 31396243
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus.
    Hung CY; Holliday BM; Kaur H; Yadav R; Kittur FS; Xie J
    Mol Biol Rep; 2012 Jul; 39(7):7635-46. PubMed ID: 22362314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions.
    Wadgaonkar SL; Nancharaiah YV; Jacob C; Esposito G; Lens PNL
    J Microbiol; 2019 May; 57(5):362-371. PubMed ID: 30900147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum.
    Zsiros O; Nagy V; Párducz Á; Nagy G; Ünnep R; El-Ramady H; Prokisch J; Lisztes-Szabó Z; Fári M; Csajbók J; Tóth SZ; Garab G; Domokos-Szabolcsy É
    Photosynth Res; 2019 Mar; 139(1-3):449-460. PubMed ID: 30374728
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae).
    Alford ÉR; Lindblom SD; Pittarello M; Freeman JL; Fakra SC; Marcus MA; Broeckling C; Pilon-Smits EA; Paschke MW
    Am J Bot; 2014 Nov; 101(11):1895-905. PubMed ID: 25366855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of selenite and selenate on growth, leaf physiology and antioxidant defense system in wheat (Triticum aestivum L.).
    Kaur M; Sharma S
    J Sci Food Agric; 2018 Dec; 98(15):5700-5710. PubMed ID: 29736998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system.
    Li Y; Zhu N; Liang X; Zheng L; Zhang C; Li YF; Zhang Z; Gao Y; Zhao J
    Ecotoxicol Environ Saf; 2020 Feb; 189():109955. PubMed ID: 31759745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phytostabilization potential of two ecotypes of Vetiveria zizanioides in cadmium-contaminated soils: greenhouse and field experiments.
    Phusantisampan T; Meeinkuirt W; Saengwilai P; Pichtel J; Chaiyarat R
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):20027-38. PubMed ID: 27438875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis.
    Schiavon M; Pilon-Smits EA; Citta A; Folda A; Rigobello MP; Dalla Vecchia F
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15023-32. PubMed ID: 27083905
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans.
    Alirzayeva E; Neumann G; Horst W; Allahverdiyeva Y; Specht A; Alizade V
    Environ Pollut; 2017 Jan; 220(Pt B):1024-1035. PubMed ID: 27890587
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice.
    Wang P; Menzies NW; Lombi E; McKenna BA; James S; Tang C; Kopittke PM
    J Exp Bot; 2015 Aug; 66(15):4795-806. PubMed ID: 26019258
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The potential of rhizosphere microbes isolated from a constructed wetland to biomethylate selenium.
    Azaizeh HA; Salhani N; Sebesvari Z; Emons H
    J Environ Qual; 2003; 32(1):55-62. PubMed ID: 12549542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The intensity of tyrosine nitration is associated with selenite and selenate toxicity in Brassica juncea L.
    Molnár Á; Feigl G; Trifán V; Ördög A; Szőllősi R; Erdei L; Kolbert Z
    Ecotoxicol Environ Saf; 2018 Jan; 147():93-101. PubMed ID: 28837875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.
    Corno L; Pilu R; Adani F
    Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ecotypic variation in selenium accumulation among populations of Stanleya pinnata.
    Feist LJ; Parker DR
    New Phytol; 2001 Jan; 149(1):61-69. PubMed ID: 33853233
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selenium assimilation and differential response to elevated sulfate and chloride salt concentrations in two saltgrass ecotypes.
    Enberg A; Wu L
    Ecotoxicol Environ Saf; 1995 Nov; 32(2):171-8. PubMed ID: 8575363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.