These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 30196902)
1. Low quality diet and challenging temperatures affect vital rates, but not thermal tolerance in a tropical insect expanding its diet to an exotic plant. Garcia-Robledo C; Charlotten-Silva M; Cruz C; Kuprewicz EK J Therm Biol; 2018 Oct; 77():7-13. PubMed ID: 30196902 [TBL] [Abstract][Full Text] [Related]
2. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867 [TBL] [Abstract][Full Text] [Related]
3. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. Turriago JL; Tejedo M; Hoyos JM; Bernal MH J Exp Zool A Ecol Integr Physiol; 2022 Aug; 337(7):746-759. PubMed ID: 35674344 [TBL] [Abstract][Full Text] [Related]
4. Experimental demography and the vital rates of generalist and specialist insect herbivores on native and novel host plants. García-Robledo C; Horvitz CC J Anim Ecol; 2011 Sep; 80(5):976-89. PubMed ID: 21534952 [TBL] [Abstract][Full Text] [Related]
5. Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: implications for warming impact prediction. Simon MN; Ribeiro PL; Navas CA J Therm Biol; 2015 Feb; 48():36-44. PubMed ID: 25660628 [TBL] [Abstract][Full Text] [Related]
7. Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. Moyano M; Candebat C; Ruhbaum Y; Álvarez-Fernández S; Claireaux G; Zambonino-Infante JL; Peck MA PLoS One; 2017; 12(7):e0179928. PubMed ID: 28749960 [TBL] [Abstract][Full Text] [Related]
8. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols. Chidawanyika F; Nyamukondiwa C; Strathie L; Fischer K PLoS One; 2017; 12(1):e0169371. PubMed ID: 28052099 [TBL] [Abstract][Full Text] [Related]
9. Integrating both interaction pathways between warming and pesticide exposure on upper thermal tolerance in high- and low-latitude populations of an aquatic insect. Op de Beeck L; Verheyen J; Stoks R Environ Pollut; 2017 May; 224():714-721. PubMed ID: 28040340 [TBL] [Abstract][Full Text] [Related]
10. Demographic Attritions, Elevational Refugia, and the Resilience of Insect Populations to Projected Global Warming. García-Robledo C; Baer CS Am Nat; 2021 Jul; 198(1):113-127. PubMed ID: 34143727 [TBL] [Abstract][Full Text] [Related]
11. Limited thermal plasticity may constrain ecosystem function in a basally heat tolerant tropical telecoprid dung beetle, Allogymnopleurus thalassinus (Klug, 1855). Machekano H; Zidana C; Gotcha N; Nyamukondiwa C Sci Rep; 2021 Nov; 11(1):22192. PubMed ID: 34772933 [TBL] [Abstract][Full Text] [Related]
12. The effect of acclimation on heat tolerance of Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae). Li M; Li XJ; Lü JH; Huo MF J Therm Biol; 2018 Jan; 71():153-157. PubMed ID: 29301684 [TBL] [Abstract][Full Text] [Related]
13. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. Kingsolver JG; MacLean HJ; Goddin SB; Augustine KE J Exp Biol; 2016 May; 219(Pt 9):1290-4. PubMed ID: 26944498 [TBL] [Abstract][Full Text] [Related]
14. The lack of plasticity and interspecific variability in thermal limits produce a highly heat-tolerant tropical host-parasitoid system. Bussy M; Destierdt W; Masnou P; Lazzari C; Goubault M; Pincebourde S J Therm Biol; 2024 Jul; 123():103930. PubMed ID: 39116624 [TBL] [Abstract][Full Text] [Related]
15. Temporal variation of thermal sensitivity to global warming: Acclimatization in the guitarist beetle, Megelenophorus americanus (Coleoptera: Tenebrionidae) from the Monte Desert. Aragon-Traverso JH; Piñeiro M; Olivares JPS; Sanabria EA Comp Biochem Physiol A Mol Integr Physiol; 2023 Nov; 285():111505. PubMed ID: 37619666 [TBL] [Abstract][Full Text] [Related]
16. Thermal limits along tropical elevational gradients: Poison frog tadpoles show plasticity but maintain divergence across elevation. Páez-Vacas MI; Funk WC J Therm Biol; 2024 Feb; 120():103815. PubMed ID: 38402728 [TBL] [Abstract][Full Text] [Related]
17. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091 [TBL] [Abstract][Full Text] [Related]
18. Source of environmental data and warming tolerance estimation in six species of North American larval anurans. Katzenberger M; Hammond J; Tejedo M; Relyea R J Therm Biol; 2018 Aug; 76():171-178. PubMed ID: 30143292 [TBL] [Abstract][Full Text] [Related]
19. Thermal tolerance and preference of exploited turbinid snails near their range limit in a global warming hotspot. Lah RA; Benkendorff K; Bucher D J Therm Biol; 2017 Feb; 64():100-108. PubMed ID: 28166939 [TBL] [Abstract][Full Text] [Related]
20. The developmental race between maturing host plants and their butterfly herbivore - the influence of phenological matching and temperature. Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K J Anim Ecol; 2015 Nov; 84(6):1690-9. PubMed ID: 26114999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]