These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 30197241)
21. Arabidopsis cryptochrome 1 promotes stomatal development through repression of AGB1 inhibition of SPEECHLESS DNA-binding activity. Cao X; Xu P; Liu Y; Yang G; Liu M; Chen L; Cheng Y; Xu P; Miao L; Mao Z; Wang W; Kou S; Guo T; Yang HQ J Integr Plant Biol; 2021 Nov; 63(11):1967-1981. PubMed ID: 34469075 [TBL] [Abstract][Full Text] [Related]
22. Experimental validation of the mechanism of stomatal development diversification. Doll Y; Koga H; Tsukaya H J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400 [TBL] [Abstract][Full Text] [Related]
23. The plant stomatal lineage at a glance. Lee LR; Bergmann DC J Cell Sci; 2019 Apr; 132(8):. PubMed ID: 31028153 [TBL] [Abstract][Full Text] [Related]
24. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Lampard GR; Macalister CA; Bergmann DC Science; 2008 Nov; 322(5904):1113-6. PubMed ID: 19008449 [TBL] [Abstract][Full Text] [Related]
25. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Han C; Liu Y; Shi W; Qiao Y; Wang L; Tian Y; Fan M; Deng Z; Lau OS; De Jaeger G; Bai MY Nat Commun; 2020 Aug; 11(1):4214. PubMed ID: 32843632 [TBL] [Abstract][Full Text] [Related]
26. The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis. Xue X; Bian C; Guo X; Di R; Dong J PLoS Genet; 2020 Apr; 16(4):e1008706. PubMed ID: 32240168 [TBL] [Abstract][Full Text] [Related]
27. Light regulates stomatal development by modulating paracrine signaling from inner tissues. Wang S; Zhou Z; Rahiman R; Lee GSY; Yeo YK; Yang X; Lau OS Nat Commun; 2021 Jun; 12(1):3403. PubMed ID: 34099707 [TBL] [Abstract][Full Text] [Related]
28. FAMA is an essential component for the differentiation of two distinct cell types, myrosin cells and guard cells, in Arabidopsis. Shirakawa M; Ueda H; Nagano AJ; Shimada T; Kohchi T; Hara-Nishimura I Plant Cell; 2014 Oct; 26(10):4039-52. PubMed ID: 25304202 [TBL] [Abstract][Full Text] [Related]
29. Dynamic analysis of epidermal cell divisions identifies specific roles for COP10 in Arabidopsis stomatal lineage development. Delgado D; Ballesteros I; Torres-Contreras J; Mena M; Fenoll C Planta; 2012 Aug; 236(2):447-61. PubMed ID: 22407427 [TBL] [Abstract][Full Text] [Related]
30. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis. Fu ZW; Wang YL; Lu YT; Yuan TT Plant Sci; 2016 Nov; 252():282-289. PubMed ID: 27717464 [TBL] [Abstract][Full Text] [Related]
31. IDD16 negatively regulates stomatal initiation via trans-repression of SPCH in Arabidopsis. Qi SL; Lin QF; Feng XJ; Han HL; Liu J; Zhang L; Wu S; Le J; Blumwald E; Hua XJ Plant Biotechnol J; 2019 Jul; 17(7):1446-1457. PubMed ID: 30623555 [TBL] [Abstract][Full Text] [Related]
32. Emerging roles of protein phosphorylation in regulation of stomatal development. Chen L J Plant Physiol; 2023 Jan; 280():153882. PubMed ID: 36493667 [TBL] [Abstract][Full Text] [Related]
33. Generation of spatial patterns through cell polarity switching. Robinson S; Barbier de Reuille P; Chan J; Bergmann D; Prusinkiewicz P; Coen E Science; 2011 Sep; 333(6048):1436-40. PubMed ID: 21903812 [TBL] [Abstract][Full Text] [Related]
34. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor. Zuch DT; Herrmann A; Kim ED; Torii KU Plant Cell Physiol; 2023 Mar; 64(3):325-335. PubMed ID: 36609867 [TBL] [Abstract][Full Text] [Related]
35. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell. Yang K; Jiang M; Le J J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951 [TBL] [Abstract][Full Text] [Related]
36. Transcriptional control of cell fate in the stomatal lineage. Simmons AR; Bergmann DC Curr Opin Plant Biol; 2016 Feb; 29():1-8. PubMed ID: 26550955 [TBL] [Abstract][Full Text] [Related]
37. Molecular control of stomatal development. Zoulias N; Harrison EL; Casson SA; Gray JE Biochem J; 2018 Jan; 475(2):441-454. PubMed ID: 29386377 [TBL] [Abstract][Full Text] [Related]
38. HSP90 chaperones regulate stomatal differentiation under normal and heat stress conditions. Samakovli D; Tichá T; Šamaj J Plant Signal Behav; 2020 Sep; 15(9):1789817. PubMed ID: 32669038 [TBL] [Abstract][Full Text] [Related]
39. Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Lee JH; Jung JH; Park CM Plant Cell; 2017 Nov; 29(11):2817-2830. PubMed ID: 29070509 [TBL] [Abstract][Full Text] [Related]
40. SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Gudesblat GE; Schneider-Pizoń J; Betti C; Mayerhofer J; Vanhoutte I; van Dongen W; Boeren S; Zhiponova M; de Vries S; Jonak C; Russinova E Nat Cell Biol; 2012 Apr; 14(5):548-54. PubMed ID: 22466366 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]