These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30197387)

  • 41. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk.
    Xu Y; Kutsanedzie FYH; Hassan MM; Li H; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():405-412. PubMed ID: 30170175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanostructured hybrid surface enhancement Raman scattering substrate for the rapid determination of sulfapyridine in milk samples.
    Moreno V; Adnane A; Salghi R; Zougagh M; Ríos Á
    Talanta; 2019 Mar; 194():357-362. PubMed ID: 30609543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by β-cyclodextrin-modified gold nanoparticles.
    Yu Z; Grasso MF; Sorensen HH; Zhang P
    Mikrochim Acta; 2019 May; 186(6):391. PubMed ID: 31152234
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles.
    Senapati T; Senapati D; Singh AK; Fan Z; Kanchanapally R; Ray PC
    Chem Commun (Camb); 2011 Oct; 47(37):10326-8. PubMed ID: 21853207
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultrasensitive SERS detection of lysozyme by a target-triggering multiple cycle amplification strategy based on a gold substrate.
    He P; Zhang Y; Liu L; Qiao W; Zhang S
    Chemistry; 2013 Jun; 19(23):7452-60. PubMed ID: 23576076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry.
    MacLaughlin CM; Mullaithilaga N; Yang G; Ip SY; Wang C; Walker GC
    Langmuir; 2013 Feb; 29(6):1908-19. PubMed ID: 23360230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2(+) ion implantation modified indium tin oxide as the SERS-active substrate.
    Li S; Liu L; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():533-7. PubMed ID: 22137745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitation of Oxcarbazepine Clinically in Plasma Using Surfaced-Enhanced Raman Spectroscopy (SERS) Coupled with Chemometrics.
    Liu M; Wang Y; Jiang Y; Liu H; Chen J; Liu S
    Appl Spectrosc; 2019 Jul; 73(7):801-809. PubMed ID: 30990054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen.
    Panikkanvalappil SR; El-Sayed MA
    J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid and Highly Efficient Detection of Ultra-low Concentration of Penicillin G by Gold Nanoparticles/Porous Silicon SERS Active Substrate.
    Wali LA; Hasan KK; Alwan AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():31-36. PubMed ID: 30077894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Threshold limit values of the cadmium concentration in rice in the development of itai-itai disease using benchmark dose analysis.
    Nogawa K; Sakurai M; Ishizaki M; Kido T; Nakagawa H; Suwazono Y
    J Appl Toxicol; 2017 Aug; 37(8):962-966. PubMed ID: 28186360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cadmium and lead contents in rice and other cereal products in Japan in 1998-2000.
    Shimbo S; Zhang ZW; Watanabe T; Nakatsuka H; Matsuda-Inoguchi N; Higashikawa K; Ikeda M
    Sci Total Environ; 2001 Dec; 281(1-3):165-75. PubMed ID: 11778949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Sensitive Detection of Clenbuterol in Animal Urine Using Immunomagnetic Bead Treatment and Surface-Enhanced Raman Spectroscopy.
    Cheng J; Su XO; Wang S; Zhao Y
    Sci Rep; 2016 Sep; 6():32637. PubMed ID: 27599754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues.
    Chen M; Zhang Z; Liu M; Qiu C; Yang H; Chen X
    Talanta; 2017 Apr; 165():313-320. PubMed ID: 28153259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions.
    Zhao L; Gu W; Zhang C; Shi X; Xian Y
    J Colloid Interface Sci; 2016 Mar; 465():279-85. PubMed ID: 26688120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface-enhanced Raman probe for rapid nanoextraction and detection of erythropoietin in urine.
    Selbes YS; Caglayan MG; Eryilmaz M; Boyaci IH; Saglam N; Basaran AA; Tamer U
    Anal Bioanal Chem; 2016 Nov; 408(29):8447-8456. PubMed ID: 27722945
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses.
    Wei K; Shen Z; Malini O
    Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.