These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30197471)

  • 1. Early fire detection for underground diesel fuel storage areas.
    Yuan L; Thomas RA; Rowland JH; Zhou L
    Process Saf Environ Prot; 2018 Oct; 119():69-74. PubMed ID: 30197471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of detection and response times of fire sensors using an atmospheric monitoring system.
    Rowland JH; Litton CD; Thomas RA
    Trans Soc Min Metall Explor Inc; 2016; 340(1):104-112. PubMed ID: 28529442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and experimental investigation of carbon monoxide spread in underground mine fires.
    Zhou L; Yuan L; Bahrami D; Thomas RA; Rowland JH
    J Fire Sci; 2018; 36(5):406-418. PubMed ID: 30270967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.
    Perera IE; Litton CD
    Trans Soc Min Metall Explor Inc; 2014; 336(1):381-390. PubMed ID: 26229418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Different Carbon Monoxide Sensors for Battery Charging Stations.
    Rowland JH; Yuan L; Thomas RA; Zhou L
    Min Metall Explor; 2019; 36(2):245-255. PubMed ID: 35836968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a mine fire using atmospheric monitoring system sensor data.
    Yuan L; Thomas RA; Zhou L
    Min Eng; 2017 Jun; 69(6):57-62. PubMed ID: 28845058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling carbon monoxide spread in underground mine fires.
    Yuan L; Zhou L; Smith AC
    Appl Therm Eng; 2016 May; 100():1319-1326. PubMed ID: 27069400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of atmospheric monitoring systems in U.S. underground coal mines.
    Rowland JH; Harteis SP; Yuan L
    Min Eng; 2018 Feb; 70(2):37-40. PubMed ID: 29674789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.
    Scheepers PT; Micka V; Muzyka V; Anzion R; Dahmann D; Poole J; Bos RP
    Ann Occup Hyg; 2003 Jul; 47(5):379-88. PubMed ID: 12855488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appraisal of carbon monoxide emission at surface due to long standing underground fires in Jharia coalfield, India.
    Prakash A; Singh G; Singh KB
    J Environ Sci Eng; 2009 Apr; 51(2):107-10. PubMed ID: 21114163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines.
    Kurnia JC; Sasmito AP; Wong WY; Mujumdar AS
    Sci Total Environ; 2014 May; 481():317-34. PubMed ID: 24607396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occupational exposures to emissions from combustion of diesel and alternative fuels in underground mining--a simulated pilot study.
    Lutz EA; Reed RJ; Lee VS; Burgess JL
    J Occup Environ Hyg; 2015; 12(3):D18-25. PubMed ID: 25412337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.
    Litton CD; Perera IE
    Fire Saf J; 2012 Jul; 51():110-119. PubMed ID: 26566298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of personal diesel and biodiesel exhaust exposures in an underground mine.
    Lutz EA; Reed RJ; Lee VST; Burgess JL
    J Occup Environ Hyg; 2017 Jul; 14(7):D102-D109. PubMed ID: 28166462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research progress and visualization of underground coal fire detection methods.
    Wang T; Wang H; Fang X; Wang G; Chen Y; Xu Z; Qi Q
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74671-74690. PubMed ID: 37233933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.
    Bugarski AD; Cauda EG; Janisko SJ; Hummer JA; Patts LD
    J Air Waste Manag Assoc; 2010 Feb; 60(2):237-44. PubMed ID: 20222537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the Location and Size of an Underground Mine Fire with Simulated Ventilation Data and Random Forest Model.
    Xue Y; Bahrami D; Zhou L
    Min Metall Explor; 2023; 40(4):1399-1407. PubMed ID: 38348450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of occupational exposure to diesel exhaust on porphyrin metabolism in lymphocytes of workers employed at black coal and oil-shale mines.
    Muzyka V; Bogovski S; Scheepers P; Volf J; Kusova J
    Am J Ind Med; 2003 Jul; 44(1):70-4. PubMed ID: 12822138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underground Mine Safety and Health: A Hybrid MEREC-CoCoSo System for the Selection of Best Sensor.
    Wang Q; Cheng T; Lu Y; Liu H; Zhang R; Huang J
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Aerosols in an Underground Mine during a Longwall Move.
    Bugarski AD; Hummer JA; Vanderslice S; Shahan MR
    Min Metall Explor; 2020 Apr; 37(4):1065-1078. PubMed ID: 35979390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.