BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 3019771)

  • 21. A study of calcification in the leg tendons from the domestic turkey.
    Landis WJ
    J Ultrastruct Mol Struct Res; 1986 Mar; 94(3):217-38. PubMed ID: 3027205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Type I collagen shows a specific binding affinity for bovine dentin phosphophoryn.
    Stetler-Stevenson WG; Veis A
    Calcif Tissue Int; 1986 Mar; 38(3):135-41. PubMed ID: 3011229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix.
    Landis WJ
    Bone; 1995 May; 16(5):533-44. PubMed ID: 7654469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dentin phosphophoryn binding to collagen fibrils.
    Traub W; Jodaikin A; Arad T; Veis A; Sabsay B
    Matrix; 1992 Jun; 12(3):197-201. PubMed ID: 1406453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organization of apatite crystals in human woven bone.
    Su X; Sun K; Cui FZ; Landis WJ
    Bone; 2003 Feb; 32(2):150-62. PubMed ID: 12633787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of the collagen fibril diameter in the equine superficial digital flexor tendon in horses by decorin.
    Watanabe T; Hosaka Y; Yamamoto E; Ueda H; Sugawara K; Takahashi H; Takehana K
    J Vet Med Sci; 2005 Sep; 67(9):855-60. PubMed ID: 16210795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission electron microscopic studies on articular calcium crystals and associated protein coatings.
    Schumacher HR; Cherian PV
    Scan Electron Microsc; 1984; (Pt 2):965-8. PubMed ID: 6091261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteoglycan:collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues.
    Scott JE
    J Anat; 1990 Apr; 169():23-35. PubMed ID: 2384335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchrotron diffraction study of deformation mechanisms in mineralized tendon.
    Gupta HS; Messmer P; Roschger P; Bernstorff S; Klaushofer K; Fratzl P
    Phys Rev Lett; 2004 Oct; 93(15):158101. PubMed ID: 15524943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons.
    Michna H
    Cell Tissue Res; 1984; 236(2):465-70. PubMed ID: 6733772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal size and organization in bone.
    Weiner S; Traub W
    Connect Tissue Res; 1989; 21(1-4):259-65. PubMed ID: 2605950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The three-dimensional spatial relationship between the collagen fibrils and the inorganic calcium-phosphate crystals of pickerel and herring fish bone.
    Lee DD; Glimcher MJ
    Connect Tissue Res; 1989; 21(1-4):247-57. PubMed ID: 2605949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate.
    Hunter GK; Allen BL; Grynpas MD; Cheng PT
    Biochem J; 1985 Jun; 228(2):463-9. PubMed ID: 2990448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography.
    McEwen BF; Song MJ; Landis WJ
    J Comput Assist Microsc; 1991; 3(4):201-10. PubMed ID: 11537967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oriented Crystallization of Hydroxyapatite in Self-Assembled Peptide Fibrils as a Bonelike Material.
    Shao C; Zhang Z; Jin W; Zhang Z; Jin B; Jiang S; Pan H; Tang R; De Yoreo JJ; Liu XY
    ACS Biomater Sci Eng; 2023 Apr; 9(4):1808-1814. PubMed ID: 34855358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspects of mineral structure in normally calcifying avian tendon.
    Siperko LM; Landis WJ
    J Struct Biol; 2001 Sep; 135(3):313-20. PubMed ID: 11722171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.