These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30198000)

  • 1. Lipid Extraction by α-Synuclein Generates Semi-Transmembrane Defects and Lipoprotein Nanoparticles.
    Pan J; Dalzini A; Khadka NK; Aryal CM; Song L
    ACS Omega; 2018 Aug; 3(8):9586-9597. PubMed ID: 30198000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol and phosphatidylethanolamine lipids exert opposite effects on membrane modulations caused by the M2 amphipathic helix.
    Pan J; Dalzini A; Song L
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):201-209. PubMed ID: 30071193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIBMA nanodiscs keep α-synuclein folded.
    Adão R; Cruz PF; Vaz DC; Fonseca F; Pedersen JN; Ferreira-da-Silva F; Brito RMM; Ramos CHI; Otzen D; Keller S; Bastos M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183314. PubMed ID: 32304757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The helix 0 of endophilin modifies membrane material properties and induces local curvature.
    Aryal CM; Bui NN; Khadka NK; Song L; Pan J
    Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183397. PubMed ID: 32533976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Defects Induced by Melittin in Model Lipid Membranes: A Solution Atomic Force Microscopy Study.
    Pan J; Khadka NK
    J Phys Chem B; 2016 May; 120(20):4625-34. PubMed ID: 27167473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring lipid-dependent conformations of membrane-bound α-synuclein with the VDAC nanopore.
    Hoogerheide DP; Rostovtseva TK; Bezrukov SM
    Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183643. PubMed ID: 33971161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α-Synuclein-derived lipoparticles in the study of α-Synuclein amyloid fibril formation.
    Falke M; Victor J; Wördehoff MM; Peduzzo A; Zhang T; Schröder GF; Buell AK; Hoyer W; Etzkorn M
    Chem Phys Lipids; 2019 May; 220():57-65. PubMed ID: 30826264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the Influence of Lipid Composition on Bilayer Perturbations Induced by the N-terminal Region of the Huntingtin Protein.
    Gamage YI; Pan J
    Biophysica; 2023 Dec; 3(4):582-597. PubMed ID: 38737720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage.
    Bhattacharya S; Haldar S
    Biochim Biophys Acta; 2000 Jul; 1467(1):39-53. PubMed ID: 10930507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-terminal helices of amphiphysin and endophilin have different capabilities of membrane remodeling.
    Aryal CM; Bui NN; Song L; Pan J
    Biochim Biophys Acta Biomembr; 2022 Jul; 1864(7):183907. PubMed ID: 35247332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation.
    Choi TS; Han JY; Heo CE; Lee SW; Kim HI
    Biochim Biophys Acta Biomembr; 2018 Sep; 1860(9):1854-1862. PubMed ID: 29428500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Protein Corona on Nanoparticle-Lipid Membrane Binding: The Binding Strength and Dynamics.
    Lee H
    Langmuir; 2021 Mar; 37(12):3751-3760. PubMed ID: 33739835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy.
    Rinia HA; Demel RA; van der Eerden JP; de Kruijff B
    Biophys J; 1999 Sep; 77(3):1683-93. PubMed ID: 10465778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of hydrogen bond formation in phosphatidylethanolamine bilayers.
    Pink DA; McNeil S; Quinn B; Zuckermann MJ
    Biochim Biophys Acta; 1998 Jan; 1368(2):289-305. PubMed ID: 9459606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of AFM and SFA measurements concerning the stability of supported lipid bilayers.
    Benz M; Gutsmann T; Chen N; Tadmor R; Israelachvili J
    Biophys J; 2004 Feb; 86(2):870-9. PubMed ID: 14747322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathological role of lipid interaction with α-synuclein in Parkinson's disease.
    Suzuki M; Sango K; Wada K; Nagai Y
    Neurochem Int; 2018 Oct; 119():97-106. PubMed ID: 29305919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.