These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

706 related articles for article (PubMed ID: 30198114)

  • 21. Strategies to Develop Earth-Abundant Heterogeneous Oxygen Evolution Reaction Catalysts for pH-Neutral or pH-Near-Neutral Electrolytes.
    Dong Y; Komarneni S
    Small Methods; 2021 Jan; 5(1):e2000719. PubMed ID: 34927809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review.
    Jayabharathi J; Karthikeyan B; Vishnu B; Sriram S
    Phys Chem Chem Phys; 2023 Mar; 25(13):8992-9019. PubMed ID: 36928479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress on Nickel-Based Oxide/(Oxy)Hydroxide Electrocatalysts for the Oxygen Evolution Reaction.
    Chen Y; Rui K; Zhu J; Dou SX; Sun W
    Chemistry; 2019 Jan; 25(3):703-713. PubMed ID: 30024645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting.
    Li J; Li J; Zhou X; Xia Z; Gao W; Ma Y; Qu Y
    ACS Appl Mater Interfaces; 2016 May; 8(17):10826-34. PubMed ID: 27064172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent progress in transition metal selenide electrocatalysts for water splitting.
    Xia X; Wang L; Sui N; Colvin VL; Yu WW
    Nanoscale; 2020 Jun; 12(23):12249-12262. PubMed ID: 32514508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting.
    Wang J; Cui W; Liu Q; Xing Z; Asiri AM; Sun X
    Adv Mater; 2016 Jan; 28(2):215-30. PubMed ID: 26551487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts.
    Chen WF; Muckerman JT; Fujita E
    Chem Commun (Camb); 2013 Oct; 49(79):8896-909. PubMed ID: 23982806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance.
    Song F; Bai L; Moysiadou A; Lee S; Hu C; Liardet L; Hu X
    J Am Chem Soc; 2018 Jun; 140(25):7748-7759. PubMed ID: 29788720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.
    Teng X; Wang J; Ji L; Lv Y; Chen Z
    Nanoscale; 2018 May; 10(19):9276-9285. PubMed ID: 29736520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cobalt-based heterogeneous catalysts in an electrolyzer system for sustainable energy storage.
    Maiti A
    Dalton Trans; 2020 Sep; 49(33):11430-11450. PubMed ID: 32662489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MOF-Derived Noble Metal Free Catalysts for Electrochemical Water Splitting.
    Tao Z; Wang T; Wang X; Zheng J; Li X
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35390-35397. PubMed ID: 27966855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The oxygen evolution reaction enabled by transition metal phosphide and chalcogenide pre-catalysts with dynamic changes.
    Li W; Xiong D; Gao X; Liu L
    Chem Commun (Camb); 2019 Jul; 55(60):8744-8763. PubMed ID: 31268066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy.
    Chen Z; Yun S; Wu L; Zhang J; Shi X; Wei W; Liu Y; Zheng R; Han N; Ni BJ
    Nanomicro Lett; 2022 Dec; 15(1):4. PubMed ID: 36454315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction.
    Han L; Dong S; Wang E
    Adv Mater; 2016 Nov; 28(42):9266-9291. PubMed ID: 27569575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design.
    Li J; Tian W; Li Q; Zhao S
    ChemSusChem; 2024 Aug; 17(15):e202400239. PubMed ID: 38481084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphide-Based Electrocatalysts for Urea Electrolysis: Recent Trends and Progress.
    Kumar S; Bhanuse GB; Fu YP
    Chemphyschem; 2024 Apr; 25(8):e202300924. PubMed ID: 38366133
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational screening of transition-metal single atom doped C
    Zhou Y; Gao G; Kang J; Chu W; Wang LW
    Nanoscale; 2019 Oct; 11(39):18169-18175. PubMed ID: 31556893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.