These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 30198152)

  • 1. Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.
    Terekhov KM; Butakov ID; Danilov AA; Vassilevski YV
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3731. PubMed ID: 38018385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics-informed neural networks for parameter estimation in blood flow models.
    Garay J; Dunstan J; Uribe S; Sahli Costabal F
    Comput Biol Med; 2024 Aug; 178():108706. PubMed ID: 38879935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ML for fast assimilation of wall-pressure measurements from hypersonic flow over a cone.
    Morra P; Meneveau C; Zaki TA
    Sci Rep; 2024 Jun; 14(1):12853. PubMed ID: 38834638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction.
    Li X; Liu X; Deng X; Fan Y
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse problems in blood flow modeling: A review.
    Nolte D; Bertoglio C
    Int J Numer Method Biomed Eng; 2022 Aug; 38(8):e3613. PubMed ID: 35526113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging.
    Sarabian M; Babaee H; Laksari K
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2285-2303. PubMed ID: 35320090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the numerical treatment of viscous and convective effects in relative pressure reconstruction methods.
    Pacheco DRQ
    Int J Numer Method Biomed Eng; 2022 Mar; 38(3):e3562. PubMed ID: 34873867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimal control approach to determine resistance-type boundary conditions from in-vivo data for cardiovascular simulations.
    Fevola E; Ballarin F; Jiménez-Juan L; Fremes S; Grivet-Talocia S; Rozza G; Triverio P
    Int J Numer Method Biomed Eng; 2021 Oct; 37(10):e3516. PubMed ID: 34337877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven cardiovascular flow modelling: examples and opportunities.
    Arzani A; Dawson STM
    J R Soc Interface; 2021 Feb; 18(175):20200802. PubMed ID: 33561376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal of an open-source computational toolbox for solving PDEs in the context of chemical reaction engineering using FEniCS and complementary components.
    Ortiz-Laverde S; Rengifo C; Cobo M; Figueredo M
    Heliyon; 2021 Jan; 7(1):e05772. PubMed ID: 33521341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry.
    Gaidzik F; Pathiraja S; Saalfeld S; Stucht D; Speck O; Thévenin D; Janiga G
    Clin Neuroradiol; 2021 Sep; 31(3):643-651. PubMed ID: 32974727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5D Flow Tensor MRI to Efficiently Map Reynolds Stresses of Aortic Blood Flow In-Vivo.
    Walheim J; Dillinger H; Gotschy A; Kozerke S
    Sci Rep; 2019 Dec; 9(1):18794. PubMed ID: 31827204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient flow prediction in an idealized aneurysm geometry using data assimilation.
    Gaidzik F; Stucht D; Roloff C; Speck O; Thévenin D; Janiga G
    Comput Biol Med; 2019 Dec; 115():103507. PubMed ID: 31698232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-aneurysmal flow patterns and wall shear stresses calculated with computational flow dynamics in an anterior communicating artery aneurysm depend on knowledge of patient-specific inflow rates.
    Karmonik C; Yen C; Grossman RG; Klucznik R; Benndorf G
    Acta Neurochir (Wien); 2009 May; 151(5):479-85; discussion 485. PubMed ID: 19343271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basic Principles of Hemodynamics and Cerebral Aneurysms.
    Munarriz PM; Gómez PA; Paredes I; Castaño-Leon AM; Cepeda S; Lagares A
    World Neurosurg; 2016 Apr; 88():311-319. PubMed ID: 26805691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational data assimilation for transient blood flow simulations: Cerebral aneurysms as an illustrative example.
    Funke SW; Nordaas M; Evju Ø; Alnaes MS; Mardal KA
    Int J Numer Method Biomed Eng; 2019 Jan; 35(1):e3152. PubMed ID: 30198152
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.