These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 30198263)
1. Effect of Malt-Derived Potential Antioxidants on Dimethyl Sulfide Oxidation. Baldus M; Majetschak S; Hass D; Klein R; Kunz T; Kunicka MS; Methner FJ J Agric Food Chem; 2018 Oct; 66(40):10522-10531. PubMed ID: 30198263 [TBL] [Abstract][Full Text] [Related]
2. Effect of l-Cysteine and Transition Metal Ions on Dimethyl Sulfide Oxidation. Baldus M; Klie R; De X; Methner FJ J Agric Food Chem; 2017 Mar; 65(10):2180-2188. PubMed ID: 28215084 [TBL] [Abstract][Full Text] [Related]
3. Reactions of dimethylsulfoxide reductase from Rhodobacter capsulatus with dimethyl sulfide and with dimethyl sulfoxide: complexities revealed by conventional and stopped-flow spectrophotometry. Adams B; Smith AT; Bailey S; McEwan AG; Bray RC Biochemistry; 1999 Jun; 38(26):8501-11. PubMed ID: 10387097 [TBL] [Abstract][Full Text] [Related]
4. Reactions of dimethylsulfoxide reductase in the presence of dimethyl sulfide and the structure of the dimethyl sulfide-modified enzyme. Bray RC; Adams B; Smith AT; Richards RL; Lowe DJ; Bailey S Biochemistry; 2001 Aug; 40(33):9810-20. PubMed ID: 11502174 [TBL] [Abstract][Full Text] [Related]
5. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical. Ozawa T; Hanaki A; Onodera K; Kasai M Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883 [TBL] [Abstract][Full Text] [Related]
6. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals. Soriani M; Pietraforte D; Minetti M Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126 [TBL] [Abstract][Full Text] [Related]
7. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study. Karoui H; Hogg N; Joseph J; Kalyanaraman B Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684 [TBL] [Abstract][Full Text] [Related]
8. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide. Mardyukov A; Schreiner PR Acc Chem Res; 2018 Feb; 51(2):475-483. PubMed ID: 29393624 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of free radical scavenging activities of antioxidants with an H(2)O(2)/NaOH/DMSO system by electron spin resonance. Yoshimura Y; Inomata T; Nakazawa H; Kubo H; Yamaguchi F; Ariga T J Agric Food Chem; 1999 Nov; 47(11):4653-6. PubMed ID: 10552866 [TBL] [Abstract][Full Text] [Related]
10. Effect of cysteine, N-acetyl-L-cysteine and glutathione on cytotoxic activity of antioxidants. Satoh K; Sakagami H Anticancer Res; 1997; 17(3C):2175-9. PubMed ID: 9216683 [TBL] [Abstract][Full Text] [Related]
11. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Curcio M; Puoci F; Iemma F; Parisi OI; Cirillo G; Spizzirri UG; Picci N J Agric Food Chem; 2009 Jul; 57(13):5933-8. PubMed ID: 19566085 [TBL] [Abstract][Full Text] [Related]
12. Antioxidative Mechanisms of Sulfite and Protein-Derived Thiols during Early Stages of Metal Induced Oxidative Reactions in Beer. Lund MN; Krämer AC; Andersen ML J Agric Food Chem; 2015 Sep; 63(37):8254-61. PubMed ID: 26325117 [TBL] [Abstract][Full Text] [Related]
13. Reactions of copper(II)-oligopeptide complexes with hydrogen peroxide: effects of biological reductants. Ueda J; Shimazu Y; Ozawa T Free Radic Biol Med; 1995 May; 18(5):929-33. PubMed ID: 7797103 [TBL] [Abstract][Full Text] [Related]
14. Hydroxyl radical formation resulting from the interaction of nickel complexes of L-histidine, glutathione or L-cysteine and hydrogen peroxide. Joshi S; Husain MM; Chandra R; Hasan SK; Srivastava RC Hum Exp Toxicol; 2005 Jan; 24(1):13-7. PubMed ID: 15727051 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Hansen J Appl Environ Microbiol; 1999 Sep; 65(9):3915-9. PubMed ID: 10473395 [TBL] [Abstract][Full Text] [Related]
16. Synergistic enhancement of topotecan-induced cell death by ascorbic acid in human breast MCF-7 tumor cells. Sinha BK; van 't Erve TJ; Kumar A; Bortner CD; Motten AG; Mason RP Free Radic Biol Med; 2017 Dec; 113():406-412. PubMed ID: 29079526 [TBL] [Abstract][Full Text] [Related]
17. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing. Sowden RJ; Trotter KD; Dunbar L; Craig G; Erdemli O; Spickett CM; Reglinski J Biometals; 2013 Feb; 26(1):85-96. PubMed ID: 23160798 [TBL] [Abstract][Full Text] [Related]
18. In vitro reactive oxygen species production by histatins and copper(I,II). Houghton EA; Nicholas KM J Biol Inorg Chem; 2009 Feb; 14(2):243-51. PubMed ID: 18975018 [TBL] [Abstract][Full Text] [Related]
19. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Jia H; Yang D; Han X; Cai J; Liu H; He W Nanoscale; 2016 Mar; 8(11):5938-45. PubMed ID: 26911916 [TBL] [Abstract][Full Text] [Related]
20. Copper-catalyzed asymmetric oxidation of sulfides. O'Mahony GE; Ford A; Maguire AR J Org Chem; 2012 Apr; 77(7):3288-96. PubMed ID: 22360461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]