BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 30199228)

  • 21. Influence of ITO electrode on the electrochromic performance outcomes of viologen-functionalized polyhedral oligomeric silsesquioxanes.
    Pande GK; Sun F; Kim DY; Eom JH; Park JS
    RSC Adv; 2022 Apr; 12(20):12746-12752. PubMed ID: 35480344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly transparent TiO
    Lv X; Xu X; Zhang Y; Wright DS; Zhang Y; Zhang C
    Nanotechnology; 2020 Aug; 31(35):355201. PubMed ID: 32408277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices.
    Malik N; Elool Dov N; de Ruiter G; Lahav M; van der Boom ME
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22858-22868. PubMed ID: 31117463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes.
    Palenzuela J; Viñuales A; Odriozola I; Cabañero G; Grande HJ; Ruiz V
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14562-7. PubMed ID: 25090050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices.
    Lee C; Oh Y; Yoon IS; Kim SH; Ju BK; Hong JM
    Sci Rep; 2018 Feb; 8(1):2763. PubMed ID: 29426866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene Electrode Enabling Electrochromic Approaches for Daylight-Dimming Applications.
    Kim JY; Cho NS; Cho S; Kim K; Cheon S; Kim K; Kang SY; Cho SM; Lee JI; Oh JY; Kim YH; Ryu H; Hwang CS; Kim S; Ah CS; Kim TY
    Sci Rep; 2018 Mar; 8(1):3944. PubMed ID: 29500432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Conductivity, Flexible and Transparent PEDOT:PSS Electrodes for High Performance Semi-Transparent Supercapacitors.
    Song J; Ma G; Qin F; Hu L; Luo B; Liu T; Yin X; Su Z; Zeng Z; Jiang Y; Wang G; Li Z
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32075032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Counterbalancing of morphology and conductivity of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based flexible devices.
    Jang W; Ahn S; Park S; Park JH; Wang DH
    Nanoscale; 2016 Dec; 8(47):19557-19563. PubMed ID: 27783075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials.
    Patra A; Bendikov M; Chand S
    Acc Chem Res; 2014 May; 47(5):1465-74. PubMed ID: 24785408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices.
    Kuo CW; Chang JK; Lin YC; Wu TY; Lee PY; Ho TH
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Oxidation of Polymer Electrodes for Redox Active Devices: Stabilization through Interfacial Interactions.
    Pittelli SL; Shen DE; Österholm AM; Reynolds JR
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):970-978. PubMed ID: 29266918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast, direct, low-cost route to scalable, conductive, and multipurpose poly(3,4-ethylenedixoythiophene)-coated plastic electrodes.
    Sydam R; Kokal RK; Deepa M
    Chemphyschem; 2015 Apr; 16(5):1042-51. PubMed ID: 25690903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution-Processed Highly Superparamagnetic and Conductive PEDOT:PSS/Fe
    Xia Y; Fang J; Li P; Zhang B; Yao H; Chen J; Ding J; Ouyang J
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19001-19010. PubMed ID: 28503922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free-Standing Conducting Polymer Films for High-Performance Energy Devices.
    Li Z; Ma G; Ge R; Qin F; Dong X; Meng W; Liu T; Tong J; Jiang F; Zhou Y; Li K; Min X; Huo K; Zhou Y
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):979-82. PubMed ID: 26630234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realisation of Solid-State Electrochromic Devices Based on Gel Electrolyte.
    Au BW; Chan KY; Sahdan MZ; Chong AS; Knipp D
    F1000Res; 2022; 11():380. PubMed ID: 35706997
    [No Abstract]   [Full Text] [Related]  

  • 36. Indium-Zinc-Tin-Oxide Film Prepared by Reactive Magnetron Sputtering for Electrochromic Applications.
    Li KD; Chen PW; Chang KS; Hsu SC; Jan DJ
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30413100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochromic properties of inkjet printed vanadium oxide gel on flexible polyethylene terephthalate/indium tin oxide electrodes.
    Costa C; Pinheiro C; Henriques I; Laia CA
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5266-75. PubMed ID: 22950672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensional Conductive Nanocomposites Based on Multiwalled Carbon Nanotube Networks and PEDOT:PSS as a Flexible Transparent Electrode for Optoelectronics.
    Cho EC; Li CP; Huang JH; Lee KC; Huang JH
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11668-76. PubMed ID: 25970208
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrostatic-Force-Assisted Dispensing Printing of Electrochromic Gels for Low-Voltage Displays.
    Kim KW; Oh H; Bae JH; Kim H; Moon HC; Kim SH
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18994-19000. PubMed ID: 28471167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman Microscopy Insights on the Out-of-Plane Electrical Transport of Carbon Nanotube-Doped PEDOT:PSS Electrodes for Solar Cell Applications.
    Mombrú D; Romero M; Faccio R; Mombrú AW
    J Phys Chem B; 2018 Mar; 122(9):2694-2701. PubMed ID: 29466008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.