These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30199243)

  • 1. Flexible Continuous Particle Beam Switching via External-Field-Reconfigurable Asymmetric Induced-Charge Electroosmosis.
    Sun H; Ren Y; Liu W; Feng X; Hou L; Tao Y; Jiang H
    Anal Chem; 2018 Oct; 90(19):11376-11384. PubMed ID: 30199243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow.
    Sun H; Ren Y; Hou L; Tao Y; Liu W; Jiang T; Jiang H
    Anal Chem; 2019 May; 91(9):5729-5738. PubMed ID: 30938976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.
    Liu W; Shao J; Ren Y; Liu J; Tao Y; Jiang H; Ding Y
    Biomicrofluidics; 2016 May; 10(3):034105. PubMed ID: 27190570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis.
    Ren Y; Liu X; Liu W; Tao Y; Jia Y; Hou L; Li W; Jiang H
    Electrophoresis; 2018 Feb; 39(4):597-607. PubMed ID: 29115688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Particle Focusing and Switching in Continuous Flow via Controllable Thermal Buoyancy Convection.
    Zhang K; Ren Y; Hou L; Jiang T; Jiang H
    Anal Chem; 2020 Feb; 92(3):2778-2786. PubMed ID: 31909587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array.
    Ren Y; Song C; Liu W; Jiang T; Song J; Wu Q; Jiang H
    Electrophoresis; 2019 Mar; 40(6):979-992. PubMed ID: 30256428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of field-effect control on hybrid electrokinetics for continuous and position-tunable nanoparticle concentration in microfluidics.
    Tao Y; Liu W; Song C; Ge Z; Li Z; Li Y; Ren Y
    Electrophoresis; 2022 Nov; 43(21-22):2074-2092. PubMed ID: 36030405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A High-Throughput Electrokinetic Micromixer via AC Field-Effect Nonlinear Electroosmosis Control in 3D Electrode Configurations.
    Du K; Liu W; Ren Y; Jiang T; Song J; Wu Q; Tao Y
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis.
    Ren Y; Liu J; Liu W; Lang Q; Tao Y; Hu Q; Hou L; Jiang H
    Lab Chip; 2016 Aug; 16(15):2803-12. PubMed ID: 27354159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifrequency Induced-Charge Electroosmosis.
    Du K; Song J; Liu W; Tao Y; Ren Y
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31277290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On ion transport regulation with field-effect nonlinear electroosmosis control in microfluidics embedding an ion-selective medium.
    Liu W; Ren Y; Xue R; Song C; Wu Q
    Electrophoresis; 2020 Jun; 41(10-11):778-792. PubMed ID: 31943244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Investigation of Enhancing Microfluidic Heterogeneous Immunoassay on Bipolar Electrodes Driven by Induced-Charge Electroosmosis in Rotating Electric Fields.
    Ge Z; Yan H; Liu W; Song C; Xue R; Ren Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis.
    Jiang T; Tao Y; Jiang H; Liu W; Hu Y; Tang D
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30781666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye⁻Huckel Limit.
    Liu W; Wu Q; Ren Y; Cui P; Yao B; Li Y; Hui M; Jiang T; Bai L
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On Developing Field-Effect-Tunable Nanofluidic Ion Diodes with Bipolar, Induced-Charge Electrokinetics.
    Tao Y; Liu W; Ren Y; Hu Y; Li G; Ma G; Wu Q
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic particle translocation through a nanopore containing a floating electrode.
    Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S
    Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.
    Ren Y; Liu W; Liu J; Tao Y; Guo Y; Jiang H
    Biomicrofluidics; 2016 Sep; 10(5):054103. PubMed ID: 27703589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced-charge electroosmotic trapping of particles.
    Ren Y; Liu W; Jia Y; Tao Y; Shao J; Ding Y; Jiang H
    Lab Chip; 2015 May; 15(10):2181-91. PubMed ID: 25828535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.