These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30199249)

  • 21. Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation.
    Chen K; Duan W; Han Q; Sun X; Li W; Hu S; Wan J; Wu J; Ge Y; Liu D
    J Biomol Struct Dyn; 2019 Feb; 37(3):611-622. PubMed ID: 29380674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor.
    M Serafim RA; da Silva Santiago A; Schwalm MP; Hu Z; Dos Reis CV; Takarada JE; Mezzomo P; Massirer KB; Kudolo M; Gerstenecker S; Chaikuad A; Zender L; Knapp S; Laufer S; Couñago RM; Gehringer M
    J Med Chem; 2022 Feb; 65(4):3173-3192. PubMed ID: 35167750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures.
    Hiruma Y; Koch A; Hazraty N; Tsakou F; Medema RH; Joosten RP; Perrakis A
    J Biol Chem; 2017 Sep; 292(35):14496-14504. PubMed ID: 28726638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amine aurora kinase inhibitors.
    Wang S; Midgley CA; Scaërou F; Grabarek JB; Griffiths G; Jackson W; Kontopidis G; McClue SJ; McInnes C; Meades C; Mezna M; Plater A; Stuart I; Thomas MP; Wood G; Clarke RG; Blake DG; Zheleva DI; Lane DP; Jackson RC; Glover DM; Fischer PM
    J Med Chem; 2010 Jun; 53(11):4367-78. PubMed ID: 20462263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex.
    Tipton AR; Ji W; Sturt-Gillespie B; Bekier ME; Wang K; Taylor WR; Liu ST
    J Biol Chem; 2013 Dec; 288(49):35149-58. PubMed ID: 24151075
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.
    Sugimoto Y; Sawant DB; Fisk HA; Mao L; Li C; Chettiar S; Li PK; Darby MV; Brueggemeier RW
    Bioorg Med Chem; 2017 Apr; 25(7):2156-2166. PubMed ID: 28259529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.
    Martinez R; Blasina A; Hallin JF; Hu W; Rymer I; Fan J; Hoffman RL; Murphy S; Marx M; Yanochko G; Trajkovic D; Dinh D; Timofeevski S; Zhu Z; Sun P; Lappin PB; Murray BW
    PLoS One; 2015; 10(9):e0138616. PubMed ID: 26398286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and evaluation of pyrido-thieno-pyrimidines as potent and selective Cdc7 kinase inhibitors.
    Zhao C; Tovar C; Yin X; Xu Q; Todorov IT; Vassilev LT; Chen L
    Bioorg Med Chem Lett; 2009 Jan; 19(2):319-23. PubMed ID: 19071019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer.
    Thu KL; Silvester J; Elliott MJ; Ba-Alawi W; Duncan MH; Elia AC; Mer AS; Smirnov P; Safikhani Z; Haibe-Kains B; Mak TW; Cescon DW
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1570-E1577. PubMed ID: 29378962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potency switch between CHK1 and MK2: discovery of imidazo[1,2-a]pyrazine- and imidazo[1,2-c]pyrimidine-based kinase inhibitors.
    Meng Z; Ciavarri JP; McRiner A; Zhao Y; Zhao L; Reddy PA; Zhang X; Fischmann TO; Whitehurst C; Arshad Siddiqui M
    Bioorg Med Chem Lett; 2013 May; 23(10):2863-7. PubMed ID: 23587425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase.
    Hiruma Y; Koch A; Dharadhar S; Joosten RP; Perrakis A
    Proteins; 2016 Dec; 84(12):1761-1766. PubMed ID: 27699881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyrido[2, 3-d]pyrimidin-7(8H)-ones as new selective orally bioavailable Threonine Tyrosine Kinase (TTK) inhibitors.
    Huang M; Huang Y; Guo J; Yu L; Chang Y; Wang X; Luo J; Huang Y; Tu Z; Lu X; Xu Y; Zhang Z; Zhang Z; Ding K
    Eur J Med Chem; 2021 Feb; 211():113023. PubMed ID: 33248853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125).
    Kusakabe K; Ide N; Daigo Y; Tachibana Y; Itoh T; Yamamoto T; Hashizume H; Hato Y; Higashino K; Okano Y; Sato Y; Inoue M; Iguchi M; Kanazawa T; Ishioka Y; Dohi K; Kido Y; Sakamoto S; Yasuo K; Maeda M; Higaki M; Ueda K; Yoshizawa H; Baba Y; Shiota T; Murai H; Nakamura Y
    J Med Chem; 2013 Jun; 56(11):4343-56. PubMed ID: 23634759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 5-chloro-N4-(2-(isopropylsulfonyl)phenyl)-N2-(2-methoxy-4-(4-((4-methylpiperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)phenyl)pyrimidine-2,4-diamine (WY-135), a novel ALK inhibitor, induces cell cycle arrest and apoptosis through inhibiting ALK and its downstream pathways in Karpas299 and H2228 cells.
    Han M; Shen J; Wang L; Wang Y; Zhai X; Li Y; Liu M; Li Z; Zuo D; Wu Y
    Chem Biol Interact; 2018 Mar; 284():24-31. PubMed ID: 29458018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and optimization of an original V-shaped collection of 4-7-disubstituted pyrido[3,2-d]pyrimidines as CDK5 and DYRK1A inhibitors.
    Dehbi O; Tikad A; Bourg S; Bonnet P; Lozach O; Meijer L; Aadil M; Akssira M; Guillaumet G; Routier S
    Eur J Med Chem; 2014 Jun; 80():352-63. PubMed ID: 24793883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors.
    Chikhale R; Thorat S; Choudhary RK; Gadewal N; Khedekar P
    Bioorg Chem; 2018 Apr; 77():84-100. PubMed ID: 29342447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and biological evaluation of a triazole-based library of pyrido[2,3-d]pyrimidines as FGFR3 tyrosine kinase inhibitors.
    Le Corre L; Girard AL; Aubertin J; Radvanyi F; Benoist-Lasselin C; Jonquoy A; Mugniery E; Legeai-Mallet L; Busca P; Le Merrer Y
    Org Biomol Chem; 2010 May; 8(9):2164-73. PubMed ID: 20401393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of novel Bruton's tyrosine kinase (BTK) inhibitors bearing a pyrrolo[2,3-d]pyrimidine scaffold.
    Zhao X; Huang W; Wang Y; Xin M; Jin Q; Cai J; Tang F; Zhao Y; Xiang H
    Bioorg Med Chem; 2015 Feb; 23(4):891-901. PubMed ID: 25596757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors.
    Wissing J; Godl K; Brehmer D; Blencke S; Weber M; Habenberger P; Stein-Gerlach M; Missio A; Cotten M; Müller S; Daub H
    Mol Cell Proteomics; 2004 Dec; 3(12):1181-93. PubMed ID: 15475568
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of N-(4-{[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1 H-1,2,3-triazol-1-yl]acetamide (AZD3229), a Potent Pan-KIT Mutant Inhibitor for the Treatment of Gastrointestinal Stromal Tumors.
    Kettle JG; Anjum R; Barry E; Bhavsar D; Brown C; Boyd S; Campbell A; Goldberg K; Grondine M; Guichard S; Hardy CJ; Hunt T; Jones RDO; Li X; Moleva O; Ogg D; Overman RC; Packer MJ; Pearson S; Schimpl M; Shao W; Smith A; Smith JM; Stead D; Stokes S; Tucker M; Ye Y
    J Med Chem; 2018 Oct; 61(19):8797-8810. PubMed ID: 30204441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.