These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 30199623)

  • 21. Highly Oriented Graphite Aerogel Fabricated by Confined Liquid-Phase Expansion for Anisotropically Thermally Conductive Epoxy Composites.
    Li M; Liu J; Pan S; Zhang J; Liu Y; Liu J; Lu H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27476-27484. PubMed ID: 32432449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the Thermal Conductivity Inhomogeneities of Injection-Molded Particle-Filled Composites, Caused by Segregation.
    Suplicz A; Semperger OV; Kovács JG
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31623099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing Porous Alumina Frameworks by Sintering for Enhanced Thermal Conductivity of Polymer Composites.
    Wu X; Liu W; Shi FG; Zhang C
    ACS Omega; 2023 Jan; 8(1):502-508. PubMed ID: 36643517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly Thermally Conductive and Superior Electrical Insulation Polymer Composites via In Situ Thermal Expansion of Expanded Graphite and In Situ Oxidation of Aluminum Nanoflakes.
    Yang S; Wang Q; Wen B
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1511-1523. PubMed ID: 33347278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified
    Yang X; Yu X; Naito K; Ding H; Qu X; Zhang Q
    J Nanosci Nanotechnol; 2018 May; 18(5):3291-3298. PubMed ID: 29442830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced the Thermal Conductivity of Polydimethylsiloxane via a Three-Dimensional Hybrid Boron Nitride@Silver Nanowires Thermal Network Filler.
    Huang Z; Wu W; Drummer D; Liu C; Wang Y; Wang Z
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33450963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-scale hybrid spherical graphite composites: a light weight thermal interface material with high thermal conductivity and simple processing technology.
    Yan D; Li Z; Kong N; Huang M; Tian Y; Ye C; Fu L; Wen B; Liu J; Tan R; Han F
    RSC Adv; 2022 Oct; 12(45):29414-29422. PubMed ID: 36320742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.
    Zeng X; Yao Y; Gong Z; Wang F; Sun R; Xu J; Wong CP
    Small; 2015 Dec; 11(46):6205-13. PubMed ID: 26479262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Thermal Conductivity of High-Density Polyethylene Composites with Hybrid Fillers of Flaky and Spherical Boron Nitride Particles.
    Gao Z; Wang Y; Zhang B; Liu L; Liu X
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic Effect of Aligned Graphene Nanosheets in Graphene Foam for High-Performance Thermally Conductive Composites.
    Wu Z; Xu C; Ma C; Liu Z; Cheng HM; Ren W
    Adv Mater; 2019 May; 31(19):e1900199. PubMed ID: 30856289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials - A review.
    Mumtaz N; Li Y; Artiaga R; Farooq Z; Mumtaz A; Guo Q; Nisa FU
    Heliyon; 2024 Feb; 10(3):e25381. PubMed ID: 38352797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Thermal Conductivity Enhanced Polymer Composites by Constructing an Oriented Three-Dimensional Staggered Interconnected Network of Boron Nitride Platelets and Carbon Nanotubes.
    Su Z; Wang H; He J; Guo Y; Qu Q; Tian X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36342-36351. PubMed ID: 30264559
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maximum conductivity of packed nanoparticles and their polymer composites.
    Untereker D; Lyu S; Schley J; Martinez G; Lohstreter L
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):97-101. PubMed ID: 20355760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of low melting point alloy/graphene three-dimensional continuous thermal conductive pathway for improving in-plane and through-plane thermal conductivity of poly(vinylidene fluoride) composites.
    Zhang P; Zhang X; Ding X; Wang Y; Shu M; Zeng X; Gong Y; Zheng K; Tian X
    Nanotechnology; 2020 Nov; 31(47):475709. PubMed ID: 32894742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications.
    Ali Z; Gao Y; Tang B; Wu X; Wang Y; Li M; Hou X; Li L; Jiang N; Yu J
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33466509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.
    Shtein M; Nadiv R; Buzaglo M; Regev O
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23725-30. PubMed ID: 26445279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the thermal conductivity of epoxy composites using a combustion-synthesized aggregated β-Si
    Shimamura A; Hotta Y; Hyuga H; Hotta M; Hirao K
    Sci Rep; 2020 Sep; 10(1):14926. PubMed ID: 32913256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the Thermal Conductivity of CNT/AlN/Silicone Rubber Composites by Using CNTs Directly Grown on AlN to Achieve a Reduced Filler Filling Ratio.
    Matsumoto N; Futaba DN; Yamada T; Kokubo K
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation.
    Mirizzi L; Carnevale M; D'Arienzo M; Milanese C; Di Credico B; Mostoni S; Scotti R
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34200899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of networked hybridized nanoparticle reinforcement on the thermal conductivity and mechanical properties of natural rubber composites.
    Jayasinghe JMARB; De Silva RT; de Silva RM; de Silva KMN; Mantilaka MMMGPG; Silva VA
    RSC Adv; 2019 Jan; 9(2):636-644. PubMed ID: 35517593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.