BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30199709)

  • 1. In-site synthesis molecular imprinting Nb
    Gao P; Wang H; Li P; Gao W; Zhang Y; Chen J; Jia N
    Biosens Bioelectron; 2018 Dec; 121():104-110. PubMed ID: 30199709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-site synthesis of an inorganic-framework molecular imprinted TiO
    Wang L; Zhang H; Shi H; Jin B; Qin X; Wang G; Li K; Zhang T; Zhang H
    Anal Methods; 2021 Jul; 13(25):2857-2864. PubMed ID: 34095910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous phase-inversion and imprinting based sensor for highly sensitive and selective detection of bisphenol A.
    Yang Q; Wu X; Peng H; Fu L; Song X; Li J; Xiong H; Chen L
    Talanta; 2018 Jan; 176():595-603. PubMed ID: 28917796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly selective and picomolar level photoelectrochemical sensor for PCB 101 detection in environmental water samples.
    Shi H; Zhao J; Wang Y; Zhao G
    Biosens Bioelectron; 2016 Jul; 81():503-509. PubMed ID: 27016911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical detection of Bisphenol A with high sensitivity and selectivity using recombinant protein-immobilized graphene electrodes.
    Kim KS; Jang JR; Choe WS; Yoo PJ
    Biosens Bioelectron; 2015 Sep; 71():214-221. PubMed ID: 25911448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples.
    Yildirim N; Long F; He M; Shi HC; Gu AZ
    Environ Sci Process Impacts; 2014 May; 16(6):1379-86. PubMed ID: 24788953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A.
    Ensafi AA; Amini M; Rezaei B
    Mikrochim Acta; 2018 Apr; 185(5):265. PubMed ID: 29691660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.
    Wang X; Lu X; Wu L; Chen J
    Biosens Bioelectron; 2015 Mar; 65():295-301. PubMed ID: 25461172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO
    Pei DN; Zhang AY; Pan XQ; Si Y; Yu HQ
    Anal Chem; 2018 Mar; 90(5):3165-3173. PubMed ID: 29461045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles at surfactant modified magnetic electrode for determination of bisphenol A.
    Zhu L; Cao Y; Cao G
    Biosens Bioelectron; 2014 Apr; 54():258-61. PubMed ID: 24287413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-powered molecularly imprinted photoelectrochemical sensor based on Ppy/QD/HOF heterojunction for the detection of bisphenol A.
    Yang Y; Zhang X; Wang X; Jing X; Yu L; Bai B; Bo T; Zhang J; Qian H; Gu Y
    Food Chem; 2024 Jun; 443():138499. PubMed ID: 38277929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode.
    Yang J; Kim SE; Cho M; Yoo IK; Choe WS; Lee Y
    Biosens Bioelectron; 2014 Nov; 61():38-44. PubMed ID: 24841092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement anti-interference ability of photoelectrochemical sensor via differential molecularly imprinting technique demonstrated by dopamine determination.
    Kang Q; Zhang Q; Zang L; Zhao M; Chen X; Shen D
    Anal Chim Acta; 2020 Aug; 1125():201-209. PubMed ID: 32674767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hollow ZnS-CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline.
    Bai X; Zhang Y; Gao W; Zhao D; Yang D; Jia N
    Biosens Bioelectron; 2020 Nov; 168():112522. PubMed ID: 32862094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced sensing platform for electrochemical monitoring of the environmental toxin; bisphenol A.
    Ezoji H; Rahimnejad M; Najafpour-Darzi G
    Ecotoxicol Environ Saf; 2020 Mar; 190():110088. PubMed ID: 31865204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel electrochemical sensor for bisphenol A detection based on nontarget-induced extension of aptamer length and formation of a physical barrier.
    Abnous K; Danesh NM; Ramezani M; Alibolandi M; Taghdisi SM
    Biosens Bioelectron; 2018 Nov; 119():204-208. PubMed ID: 30138863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive and selective optofluidics-based immunosensor for rapid assessment of Bisphenol A leaching risk.
    Long F; Zhu A; Zhou X; Wang H; Zhao Z; Liu L; Shi H
    Biosens Bioelectron; 2014 May; 55():19-25. PubMed ID: 24355461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique.
    Sun G; Wang P; Ge S; Ge L; Yu J; Yan M
    Biosens Bioelectron; 2014 Jun; 56():97-103. PubMed ID: 24480129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate.
    Yang X; Li X; Zhang L; Gong J
    Biosens Bioelectron; 2017 Jun; 92():61-67. PubMed ID: 28187300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A.
    Beitollahi H; Tajik S
    Environ Monit Assess; 2015 May; 187(5):257. PubMed ID: 25877650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.