These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 30199775)

  • 1. Optimizing the configuration of integrated nutrient and energy recovery treatment trains: A new application of global sensitivity analysis to the generic nutrient recovery model (NRM) library.
    Vaneeckhaute C; Remigi E; Tack FMG; Meers E; Belia E; Vanrolleghem PA
    Bioresour Technol; 2018 Dec; 269():375-383. PubMed ID: 30199775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient recovery from digested waste: Towards a generic roadmap for setting up an optimal treatment train.
    Vaneeckhaute C; Belia E; Meers E; Tack FMG; Vanrolleghem PA
    Waste Manag; 2018 Aug; 78():385-392. PubMed ID: 32559925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cost-effective treatment of swine wastes through recovery of energy and nutrients.
    Amini A; Aponte-Morales V; Wang M; Dilbeck M; Lahav O; Zhang Q; Cunningham JA; Ergas SJ
    Waste Manag; 2017 Nov; 69():508-517. PubMed ID: 28864310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation.
    Yilmazel YD; Demirer GN
    Waste Manag Res; 2013 Aug; 31(8):792-804. PubMed ID: 23774787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability.
    Chiumenti A; da Borso F; Chiumenti R; Teri F; Segantin P
    Waste Manag; 2013 Jun; 33(6):1339-44. PubMed ID: 23562449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of energy and nutrient resources from cattle paunch waste using temperature phased anaerobic digestion.
    Jensen PD; Mehta CM; Carney C; Batstone DJ
    Waste Manag; 2016 May; 51():72-80. PubMed ID: 26965211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal utilization of waste-to-energy in an LCA perspective.
    Fruergaard T; Astrup T
    Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.
    Xia A; Murphy JD
    Trends Biotechnol; 2016 Apr; 34(4):264-275. PubMed ID: 26776247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-driven experimental evaluation of struvite nucleation, growth and aggregation kinetics.
    Galbraith SC; Schneider PA; Flood AE
    Water Res; 2014 Jun; 56():122-32. PubMed ID: 24662095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste.
    Sarrion A; Medina-Martos E; Iribarren D; Diaz E; Mohedano AF; Dufour J
    Sci Total Environ; 2023 Jun; 878():163104. PubMed ID: 36972888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.
    Evangelisti S; Lettieri P; Borello D; Clift R
    Waste Manag; 2014 Jan; 34(1):226-37. PubMed ID: 24112851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horse manure as feedstock for anaerobic digestion.
    Hadin S; Eriksson O
    Waste Manag; 2016 Oct; 56():506-18. PubMed ID: 27396682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous mesophilic anaerobic digestion of manure and rape oilcake - Experimental and modelling study.
    Jabłoński SJ; Biernacki P; Steinigeweg S; Łukaszewicz M
    Waste Manag; 2015 Jan; 35():105-10. PubMed ID: 25318701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment.
    Xu J; Zhao Y; Zhao G; Zhang H
    Appl Microbiol Biotechnol; 2015 Aug; 99(15):6493-501. PubMed ID: 25808519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic digestion of paunch in a CSTR for renewable energy production and nutrient mineralization.
    Nkemka VN; Marchbank DH; Hao X
    Waste Manag; 2015 Sep; 43():123-9. PubMed ID: 26037058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of ammonia as struvite from anaerobic digester effluents and recycling of magnesium and phosphate.
    Türker M; Celen I
    Bioresour Technol; 2007 May; 98(8):1529-34. PubMed ID: 17084077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Navigating environmental, economic, and technological trade-offs in the design and operation of submerged anaerobic membrane bioreactors (AnMBRs).
    Pretel R; Shoener BD; Ferrer J; Guest JS
    Water Res; 2015 Dec; 87():531-41. PubMed ID: 26206622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of flow hydrodynamics of struvite pellets in a liquid-solid fluidized bed.
    Ye X; Chu D; Lou Y; Ye ZL; Wang MK; Chen S
    J Environ Sci (China); 2017 Jul; 57():391-401. PubMed ID: 28647260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.