BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30200144)

  • 1. Application of multidimensional interpolation on nonhomogeneous cancellous bone.
    Liu S; Li S; Wei N; Chang W; Hu P; Cheng X; Wang L; Chen W
    Medicine (Baltimore); 2018 Sep; 97(36):e12224. PubMed ID: 30200144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical finite element model for bone shape and biomechanical properties.
    Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated segmentation of cortical and trabecular bone to generate finite element models for femoral bone mechanics.
    Väänänen SP; Grassi L; Venäläinen MS; Matikka H; Zheng Y; Jurvelin JS; Isaksson H
    Med Eng Phys; 2019 Aug; 70():19-28. PubMed ID: 31280927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining ultrasonic and computed tomography scanning to characterize mechanical properties of cancellous bone in necrotic human femoral heads.
    Yue Y; Yang H; Li Y; Zhong H; Tang Q; Wang J; Wang R; He H; Chen W; Chen D
    Med Eng Phys; 2019 Apr; 66():12-17. PubMed ID: 30772180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach.
    Huang HL; Tsai MT; Lin DJ; Chien CS; Hsu JT
    Comput Biol Med; 2010 Apr; 40(4):464-8. PubMed ID: 20304390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling.
    Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK
    Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive value of Singh index and bone mineral density measured by quantitative computed tomography in determining the local cancellous bone quality of the proximal femur.
    Wachter NJ; Augat P; Hoellen IP; Krischak GD; Sarkar MR; Mentzel M; Kinzl L; Claes L
    Clin Biomech (Bristol, Avon); 2001 Mar; 16(3):257-62. PubMed ID: 11240062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative CT with finite element analysis: towards a predictive tool for bone remodelling around an uncemented tapered stem.
    Shim VB; Pitto RP; Anderson IA
    Int Orthop; 2012 Jul; 36(7):1363-9. PubMed ID: 22527334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing anisotropic finite element model of bone from computed tomography (CT).
    Kazembakhshi S; Luo Y
    Biomed Mater Eng; 2014; 24(6):2619-26. PubMed ID: 25226965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
    Pahr DH; Zysset PK
    Curr Osteoporos Rep; 2016 Dec; 14(6):374-385. PubMed ID: 27714581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of orthotropic and isotropic bone adaptation in the femur.
    Geraldes DM; Phillips AT
    Int J Numer Method Biomed Eng; 2014 Sep; 30(9):873-89. PubMed ID: 24753477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur.
    Cong A; Buijs JO; Dragomir-Daescu D
    Med Eng Phys; 2011 Mar; 33(2):164-73. PubMed ID: 21030287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.