These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30200144)

  • 21. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.
    Metzger TA; Niebur GL
    J Biomech; 2016 Oct; 49(14):3596-3601. PubMed ID: 27660172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material properties assignment to finite element models of bone structures: a new method.
    Zannoni C; Mantovani R; Viceconti M
    Med Eng Phys; 1998 Dec; 20(10):735-40. PubMed ID: 10223642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of effective elastic modulus using modal analysis; application to canine cancellous bone.
    Blondel M; Abidine Y; Assemat P; Palierne S; Swider P
    J Biomech; 2020 Sep; 110():109972. PubMed ID: 32827789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictions of the elastic modulus of trabecular bone in the femoral head and the intertrochanter: a solitary wave-based approach.
    Yoon S; Schiffer A; Jang IG; Lee S; Kim TY
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1733-1749. PubMed ID: 34110537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elastic modulus varies along the bovine femur.
    Nobakhti S; Katsamenis OL; Zaarour N; Limbert G; Thurner PJ
    J Mech Behav Biomed Mater; 2017 Jul; 71():279-285. PubMed ID: 28371701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved method for the automatic mapping of computed tomography numbers onto finite element models.
    Taddei F; Pancanti A; Viceconti M
    Med Eng Phys; 2004 Jan; 26(1):61-9. PubMed ID: 14644599
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Separate modeling of cortical and trabecular bone offers little improvement in FE predictions of local structural stiffness at the proximal tibia.
    Hosseini Kalajahi SM; Nazemi SM; Johnston JD
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1258-1268. PubMed ID: 31509022
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis.
    Enns-Bray WS; Owoc JS; Nishiyama KK; Boyd SK
    J Biomech; 2014 Oct; 47(13):3272-8. PubMed ID: 25219361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Error introduced by common reorientation algorithms in the assessment of rodent trabecular morphometry using micro-computed tomography.
    Newton MD; Hartner S; Gawronski K; Maerz T
    J Orthop Res; 2018 Oct; 36(10):2762-2770. PubMed ID: 29744917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QCT-FE modeling of the proximal tibia: Effect of mapping strategy on convergence time and model accuracy.
    Ashjaee N; Kalajahi SMH; Johnston JD
    Med Eng Phys; 2021 Feb; 88():41-46. PubMed ID: 33485512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone - An experimental and finite element study.
    Ojanen X; Tanska P; Malo MKH; Isaksson H; Väänänen SP; Koistinen AP; Grassi L; Magnusson SP; Ribel-Madsen SM; Korhonen RK; Jurvelin JS; Töyräs J
    J Biomech; 2017 Dec; 65():96-105. PubMed ID: 29108850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur.
    Schileo E; Pitocchi J; Falcinelli C; Taddei F
    Bone; 2020 Jul; 136():115348. PubMed ID: 32240847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties.
    Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA
    J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Misalignment Error in Cancellous Bone Apparent Elastic Modulus Depends on Bone Volume Fraction and Degree of Anisotropy.
    Bennison MBL; Pilkey AK; Lievers WB
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32601664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses.
    Baca V; Horak Z; Mikulenka P; Dzupa V
    Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling.
    Schmidt I; Papastavrou A; Steinmann P
    Comput Methods Biomech Biomed Engin; 2021 Aug; 24(11):1274-1285. PubMed ID: 33557603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing Accuracy of Proximal Femur Elastic Modulus Equations.
    Rezaei A; Carlson KD; Giambini H; Javid S; Dragomir-Daescu D
    Ann Biomed Eng; 2019 Jun; 47(6):1391-1399. PubMed ID: 30887275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction.
    Salem M; Westover L; Adeeb S; Duke K
    J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32346728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.