BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30200230)

  • 1. Charge Transport in Trap-Sensitized Infrared PbS Quantum-Dot-Based Photoconductors: Pros and Cons.
    Maulu A; Navarro-Arenas J; Rodríguez-Cantó PJ; Sánchez-Royo JF; Abargues R; Suárez I; Martínez-Pastor JP
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30200230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange.
    Yang M; Liu H; Wen S; Du Y; Gao F
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical modulation frequency mediated tunable response time and responsivity in graphene-PbS QD based hybrid photodetectors.
    Sahoo A; Reiss P; Quesnel E; Hyot B
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34126600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the photocatalytic properties of PbS QD solids: the ligand exchange approach.
    Abargues R; Navarro J; Rodríguez-Cantó PJ; Maulu A; Sánchez-Royo JF; Martínez-Pastor JP
    Nanoscale; 2019 Jan; 11(4):1978-1987. PubMed ID: 30644959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands.
    Venettacci C; Martín-García B; Prato M; Moreels I; De Iacovo A
    Nanotechnology; 2019 Oct; 30(40):405204. PubMed ID: 31272086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel post-synthesis purification strategies and the ligand exchange processes in simplifying the fabrication of PbS quantum dot solar cells.
    Tom AE; Thomas A; Ison VV
    RSC Adv; 2020 Aug; 10(51):30707-30715. PubMed ID: 35516046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids.
    Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH
    Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots.
    Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S
    ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells.
    Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minority Carrier Transport in Lead Sulfide Quantum Dot Photovoltaics.
    Rekemeyer PH; Chuang CM; Bawendi MG; Gradečak S
    Nano Lett; 2017 Oct; 17(10):6221-6227. PubMed ID: 28895741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Critical Role of Interfaces for Superior Performance in PbS Quantum Dot/Graphene Nanohybrid Broadband Photodetectors.
    Shultz A; Liu B; Gong M; Vargas HB; Robles Hernandez FC; Wu JZ
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38592435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-Length Modification in CsPbBr
    Navarro Arenas J; Soosaimanickam A; Pashaei Adl H; Abargues R; P Boix P; Rodríguez-Cantó PJ; Martínez-Pastor JP
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32630678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced film quality of PbS QD solid by eliminating the oxide traps through an
    Jia L; Wang L; Lin Y; Zhou X; Jia J
    Dalton Trans; 2023 Jan; 52(5):1441-1448. PubMed ID: 36645319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Black Phosphorus/Zero-Dimensional Quantum Dot Phototransistors: Tunable Photodoping and Enhanced Photoresponsivity.
    Lee AY; Ra HS; Kwak DH; Jeong MH; Park JH; Kang YS; Chae WS; Lee JS
    ACS Appl Mater Interfaces; 2018 May; 10(18):16033-16040. PubMed ID: 29649868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots.
    Skurlov ID; Korzhenevskii IG; Mudrak AS; Dubavik A; Cherevkov SA; Parfenov PS; Zhang X; Fedorov AV; Litvin AP; Baranov AV
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31581439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices.
    Balazs DM; Dirin DN; Fang HH; Protesescu L; ten Brink GH; Kooi BJ; Kovalenko MV; Loi MA
    ACS Nano; 2015 Dec; 9(12):11951-9. PubMed ID: 26512884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids.
    Zarghami MH; Liu Y; Gibbs M; Gebremichael E; Webster C; Law M
    ACS Nano; 2010 Apr; 4(4):2475-85. PubMed ID: 20359235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic response of hybrid PbS-QD/graphene photodetectors.
    Ahn S; Chung H; Chen W; Moreno-Gonzalez MA; Vazquez-Mena O
    J Chem Phys; 2019 Dec; 151(23):234705. PubMed ID: 31864279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Dependent Charge Carrier Transfer in Colloidal Quantum Dot/Graphene Infrared Photodetectors.
    Grotevent MJ; Hail CU; Yakunin S; Bachmann D; Kara G; Dirin DN; Calame M; Poulikakos D; Kovalenko MV; Shorubalko I
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):848-856. PubMed ID: 33350310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.