These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30200256)
1. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll Keller S; Maier PM; Riese FM; Norra S; Holbach A; Börsig N; Wilhelms A; Moldaenke C; Zaake A; Hinz S Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30200256 [TBL] [Abstract][Full Text] [Related]
2. Deep learning based regression for optically inactive inland water quality parameter estimation using airborne hyperspectral imagery. Niu C; Tan K; Jia X; Wang X Environ Pollut; 2021 Oct; 286():117534. PubMed ID: 34119861 [TBL] [Abstract][Full Text] [Related]
3. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Wang X; Gong Z; Pu R Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional augmentation for hyperspectral image data of water quality: An Integrated approach using machine learning and numerical models. Kim J; Seo D Water Res; 2024 Mar; 251():121125. PubMed ID: 38218073 [TBL] [Abstract][Full Text] [Related]
5. Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada. Zolfaghari K; Wilkes G; Bird S; Ellis D; Pintar KDM; Gottschall N; McNairn H; Lapen DR Environ Monit Assess; 2019 Dec; 192(1):67. PubMed ID: 31879802 [TBL] [Abstract][Full Text] [Related]
6. [Quantitative remote sensing retrieval for algae in inland waters]. Song Y; Song XD; Jiang H; Guo ZB; Guo QH Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1075-9. PubMed ID: 20545165 [TBL] [Abstract][Full Text] [Related]
7. Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. Meng H; Zhang J; Zheng Z Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805386 [TBL] [Abstract][Full Text] [Related]
8. A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Gómez D; Salvador P; Sanz J; Casanova JL Environ Pollut; 2021 Oct; 286():117489. PubMed ID: 34119860 [TBL] [Abstract][Full Text] [Related]
9. Responses of freshwater algal cell density to hydrochemical variables in an urban aquatic ecosystem, northern China. Yang J; Wang F; Lv J; Liu Q; Nan F; Xie S; Feng J Environ Monit Assess; 2018 Dec; 191(1):29. PubMed ID: 30591969 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations. Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203 [TBL] [Abstract][Full Text] [Related]
11. Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models. Hong SM; Baek SS; Yun D; Kwon YH; Duan H; Pyo J; Cho KH Sci Total Environ; 2021 Nov; 794():148592. PubMed ID: 34217087 [TBL] [Abstract][Full Text] [Related]
12. Determining the Spectral Requirements for Cyanobacteria Detection for the CyanoSat Hyperspectral Imager with Machine Learning. Matthews MW; Kravitz J; Pease J; Gensemer S Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765856 [TBL] [Abstract][Full Text] [Related]
13. Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools. Saboe D; Ghasemi H; Gao MM; Samardzic M; Hristovski KD; Boscovic D; Burge SR; Burge RG; Hoffman DA Sci Total Environ; 2021 Apr; 764():142876. PubMed ID: 33757235 [TBL] [Abstract][Full Text] [Related]
15. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River]. Wang SS; Wang YB; Fu QH; Yin B; Li YM Huan Jing Ke Xue; 2014 Dec; 35(12):4511-21. PubMed ID: 25826920 [TBL] [Abstract][Full Text] [Related]
16. Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Nguyen HQ; Ha NT; Nguyen-Ngoc L; Pham TL Water Environ Res; 2021 Dec; 93(12):2941-2957. PubMed ID: 34547152 [TBL] [Abstract][Full Text] [Related]
17. Real-time chlorophyll-a forecasting using machine learning framework with dimension reduction and hyperspectral data. Kim D; Lee K; Jeong S; Song M; Kim B; Park J; Heo TY Environ Res; 2024 Dec; 262(Pt 1):119823. PubMed ID: 39173818 [TBL] [Abstract][Full Text] [Related]
18. Coastal and inland water monitoring using a portable hyperspectral laser fluorometer. Chen P; Pan D; Wang T; Mao Z; Zhang Y Mar Pollut Bull; 2017 Jun; 119(1):153-161. PubMed ID: 28363427 [TBL] [Abstract][Full Text] [Related]
19. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data]. Bao Y; Tian QJ; Chen M; Lü CG Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364 [TBL] [Abstract][Full Text] [Related]
20. Integration of Remote Sensing and Mexican Water Quality Monitoring System Using an Extreme Learning Machine. Arias-Rodriguez LF; Duan Z; Díaz-Torres JJ; Basilio Hazas M; Huang J; Kumar BU; Tuo Y; Disse M Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]