These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30200308)

  • 21. Monitoring Spatio-Temporal Changes of Terrestrial Ecosystem Soil Water Use Efficiency in Northeast China Using Time Series Remote Sensing Data.
    Qi H; Huang F; Zhai H
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30917616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-series dataset on land surface temperature, vegetation, built up areas and other climatic factors in top 20 global cities (2000-2018).
    Jamei Y; Rajagopalan P; Sun QC
    Data Brief; 2019 Apr; 23():103803. PubMed ID: 31372448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving SMAP soil moisture spatial resolution in different climatic conditions using remote sensing data.
    Imanpour F; Dehghani M; Yazdi M
    Environ Monit Assess; 2023 Nov; 195(12):1476. PubMed ID: 37966581
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic Evaluation of Passive Microwave and Optical/IR Data for Modelling Vegetation Transmissivity towards Improved Soil Moisture Retrieval.
    Moradizadeh M; Srivastava PK; Petropoulos GP
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Soil Moisture Anomaly Sensitivity to Detect Drought Spatio-Temporal Variability in Romania.
    Ontel I; Irimescu A; Boldeanu G; Mihailescu D; Angearu CV; Nertan A; Craciunescu V; Negreanu S
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.
    Zhang D; Zhou G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial variability of urban climate in response to quantitative trait of land cover based on GWR model.
    Hu X; Xu H
    Environ Monit Assess; 2019 Feb; 191(3):194. PubMed ID: 30815726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Remote sensing inversion of cultivated land fertility at county scale based on SWCI-NDVI feature space].
    Li YS; Zhao GX; Wang ZR; Cui K; Xi X; Dou JC
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):252-260. PubMed ID: 33477233
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China.
    Wu M; Muhammad S; Chen F; Niu Z; Wang C
    Environ Sci Process Impacts; 2015 Apr; 17(4):753-62. PubMed ID: 25797359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the Indo-Gangetic basin.
    Sure A; Dikshit O
    J Environ Manage; 2019 Mar; 234():75-89. PubMed ID: 30616191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward High-Resolution Soil Moisture Monitoring by Combining Active-Passive Microwave and Optical Vegetation Remote Sensing Products with Land Surface Model.
    Toride K; Sawada Y; Aida K; Koike T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31514458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Soil Moisture Monitoring Based on Angle Dryness Index].
    Gao ZL; Wang JH; Zheng XP; Sun YJ; Qin QM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 May; 36(5):1378-81. PubMed ID: 30001009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Land surface temperature retrieval from AMSR-E passive microwave data.
    Zhao E; Gao C; Jiang X; Liu Z
    Opt Express; 2017 Oct; 25(20):A940-A952. PubMed ID: 29041304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosis of GLDAS LSM based aridity index and dryland identification.
    Ghazanfari S; Pande S; Hashemy M; Sonneveld B
    J Environ Manage; 2013 Apr; 119():162-72. PubMed ID: 23500019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examining the relationship between land surface temperature and landscape features using spectral indices with Google Earth Engine.
    Roy B; Bari E
    Heliyon; 2022 Sep; 8(9):e10668. PubMed ID: 36164525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy.
    Liu L; Yang X; Zhou H; Liu S; Zhou L; Li X; Yang J; Han X; Wu J
    Sci Total Environ; 2018 Jun; 625():1208-1217. PubMed ID: 29996417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Downscaling the MODIS land surface temperature using a trapezial concept applied to the MODIS and sentinel 2 images.
    Faraji Z; Kaviani A; Khosravi L
    Environ Monit Assess; 2024 Jun; 196(7):665. PubMed ID: 38935168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial-Temporal Variation of Drought in China from 1982 to 2010 Based on a modified Temperature Vegetation Drought Index (mTVDI).
    Zhao S; Cong D; He K; Yang H; Qin Z
    Sci Rep; 2017 Dec; 7(1):17473. PubMed ID: 29234101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Investigation of polarization characteristics of soil surface with low vegetation cover and different soil moisture].
    Zhang Q; Sun XB; Hong J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):3086-92. PubMed ID: 21284189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model.
    Abdul Athick ASM; Shankar K; Naqvi HR
    Data Brief; 2019 Dec; 27():104773. PubMed ID: 31763418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.