These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30200390)

  • 1. 1-Kestose, the Smallest Fructooligosaccharide Component, Which Efficiently Stimulates
    Tochio T; Kadota Y; Tanaka T; Koga Y
    Foods; 2018 Sep; 7(9):. PubMed ID: 30200390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-associated effect of kestose on Faecalibacterium prausnitzii and symptoms in the atopic dermatitis infants.
    Koga Y; Tokunaga S; Nagano J; Sato F; Konishi K; Tochio T; Murakami Y; Masumoto N; Tezuka JI; Sudo N; Kubo C; Shibata R
    Pediatr Res; 2016 Dec; 80(6):844-851. PubMed ID: 27537603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-Culture with
    Kim H; Jeong Y; Kang S; You HJ; Ji GE
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32466189
    [No Abstract]   [Full Text] [Related]  

  • 4. Enhanced butyrate formation by cross-feeding between Faecalibacterium prausnitzii and Bifidobacterium adolescentis.
    Rios-Covian D; Gueimonde M; Duncan SH; Flint HJ; de los Reyes-Gavilan CG
    FEMS Microbiol Lett; 2015 Nov; 362(21):. PubMed ID: 26420851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii.
    Moens F; Weckx S; De Vuyst L
    Int J Food Microbiol; 2016 Aug; 231():76-85. PubMed ID: 27233082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of butyrate-producing bacteria as well as bifidobacteria in the cat intestinal microbiota by the administration of 1-kestose, the smallest component of fructo-oligosaccharide.
    Shinohara M; Kiyosue M; Tochio T; Kimura S; Koga Y
    J Vet Med Sci; 2020 Jul; 82(7):866-874. PubMed ID: 32389951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of fructooligosaccharide metabolism and fructooligosaccharide-degrading enzymes in human commensal butyrate producers.
    Tanno H; Fujii T; Hirano K; Maeno S; Tonozuka T; Sakamoto M; Ohkuma M; Tochio T; Endo A
    Gut Microbes; 2021; 13(1):1-20. PubMed ID: 33439065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent trends in fructooligosaccharides production.
    Guío F; Rodríguez MA; Alméciga-Diaz CJ; Sánchez OF
    Recent Pat Food Nutr Agric; 2009 Nov; 1(3):221-30. PubMed ID: 20653543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro.
    Scott KP; Martin JC; Duncan SH; Flint HJ
    FEMS Microbiol Ecol; 2014 Jan; 87(1):30-40. PubMed ID: 23909466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ability of human intestinal anaerobes to metabolize different oligosaccharides: Novel means for microbiota modulation?
    Ose R; Hirano K; Maeno S; Nakagawa J; Salminen S; Tochio T; Endo A
    Anaerobe; 2018 Jun; 51():110-119. PubMed ID: 29734011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kestose supplementation exerts bifidogenic effect within fecal microbiota and increases fecal butyrate concentration in dogs.
    Ide K; Shinohara M; Yamagishi S; Endo A; Nishifuji K; Tochio T
    J Vet Med Sci; 2020 Jan; 82(1):1-8. PubMed ID: 31761826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth-promoting effect of alginate on Faecalibacterium prausnitzii through cross-feeding with Bacteroides.
    Murakami R; Hashikura N; Yoshida K; Xiao JZ; Odamaki T
    Food Res Int; 2021 Jun; 144():110326. PubMed ID: 34053530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of fructooligosaccharide-degrading enzymes in human commensal Bifidobacterium longum and Anaerostipes caccae.
    Tanno H; Fujii T; Ose R; Hirano K; Tochio T; Endo A
    Biochem Biophys Res Commun; 2019 Oct; 518(2):294-298. PubMed ID: 31420164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wood-Derived Dietary Fibers Promote Beneficial Human Gut Microbiota.
    La Rosa SL; Kachrimanidou V; Buffetto F; Pope PB; Pudlo NA; Martens EC; Rastall RA; Gibson GR; Westereng B
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30674645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Action and function of Faecalibacterium prausnitzii in health and disease.
    Ferreira-Halder CV; Faria AVS; Andrade SS
    Best Pract Res Clin Gastroenterol; 2017 Dec; 31(6):643-648. PubMed ID: 29566907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional Characterization of Novel
    Martín R; Miquel S; Benevides L; Bridonneau C; Robert V; Hudault S; Chain F; Berteau O; Azevedo V; Chatel JM; Sokol H; Bermúdez-Humarán LG; Thomas M; Langella P
    Front Microbiol; 2017; 8():1226. PubMed ID: 28713353
    [No Abstract]   [Full Text] [Related]  

  • 17. Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity.
    Singh SP; Jadaun JS; Narnoliya LK; Pandey A
    Appl Biochem Biotechnol; 2017 Oct; 183(2):613-635. PubMed ID: 28948462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes.
    Goh YJ; Klaenhammer TR
    Annu Rev Food Sci Technol; 2015; 6():137-56. PubMed ID: 25532597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Alteration in the Cecal Microbiota Composition by Feeding of 1-Kestose Results in a Marked Increase in the Cecal Butyrate Content in Rats.
    Tochio T; Kitaura Y; Nakamura S; Sugawa C; Takahashi M; Endo A; Shimomura Y
    PLoS One; 2016; 11(11):e0166850. PubMed ID: 27861621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Prebiotic Effect of an Organic Acid Mixture on
    Butucel E; Balta I; McCleery D; Marcu A; Stef D; Pet I; Callaway T; Stef L; Corcionivoschi N
    Biology (Basel); 2022 Dec; 12(1):. PubMed ID: 36671749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.