These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3020041)

  • 21. Interactions of glucagon and glucagon analogs with isolated canine hepatocytes.
    Hagopian WA; Tager HS; Gysin B; Trivedi D; Hruby VJ
    J Biol Chem; 1987 Nov; 262(32):15506-13. PubMed ID: 2824462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic identification of a two-state glucagon receptor system in isolated hepatocytes. Interconversion of homogeneous receptors.
    Horwitz EM; Jenkins WT; Hoosein NM; Gurd RS
    J Biol Chem; 1985 Aug; 260(16):9307-15. PubMed ID: 2991239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescent glucagon derivatives. II. The use of fluorescent glucagon derivatives for the study of receptor disposition in membranes.
    Ward LD; Cantrill RC; Heithier H; Peters R; Helmreich EJ
    Biochim Biophys Acta; 1988 Oct; 971(3):307-16. PubMed ID: 2844292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding and action of glucagon in isolated adipocytes from cortisol-treated rats.
    Calle C; Sanchez-Casas P; Simón MA; Mayor P
    Biochem Biophys Res Commun; 1987 May; 145(1):90-5. PubMed ID: 3036138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilization of soluble active rat liver glucagon receptor.
    McVittie LD; Gurd RS
    Arch Biochem Biophys; 1989 Aug; 273(1):254-63. PubMed ID: 2547342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Glucagon receptor binding and its effect on the cAMP level in isolated rat and chicken hepatocytes].
    Leĭbush BN; Ukhanova MV
    Fiziol Zh SSSR Im I M Sechenova; 1990 Sep; 76(9):1153-8. PubMed ID: 1963855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucagon1-6 binds to the glucagon receptor and activates hepatic adenylate cyclase.
    Wright DE; Rodbell M
    J Biol Chem; 1979 Jan; 254(2):268-9. PubMed ID: 216670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of specific trinitrophenylation of the lysine epsilon amino group of glucagon on receptor binding and adenylate cyclase activation.
    Liepnieks JJ; Epand RM
    Arch Biochem Biophys; 1983 Aug; 225(1):102-9. PubMed ID: 6311099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age related changes of glucagon binding and activity in isolated rat hepatocytes.
    Poli G; Cassader M; Chiarpotto E; Biasi F; Cecchini G; Pagano G
    Int J Tissue React; 1986; 8(5):367-71. PubMed ID: 3023252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-adrenergic receptors, glucagon receptors, and their relationship to adenylate cyclase in rat liver during aging.
    Dax EM; Partilla JS; Piñeyro MA; Gregerman RI
    Endocrinology; 1987 Apr; 120(4):1534-41. PubMed ID: 3030705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational determinants in receptor recognition of peptide hormones: interaction of parathyroid hormone with the glucagon receptor.
    Shah GV; Epand RM; Orlowski RC
    Mol Cell Endocrinol; 1987 Feb; 49(2-3):203-10. PubMed ID: 3030852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous solubilization of high-affinity receptors for VIP and glucagon and of a low-affinity binding protein for VIP, shown to be identical to calmodulin.
    Andersson M; Carlquist M; Maletti M; Marie JC
    FEBS Lett; 1993 Feb; 318(1):35-40. PubMed ID: 8382169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a glucagon receptor-linked protease from canine hepatic plasma membranes. Partial purification, kinetic analysis, and determination of sites for hormone processing.
    Sheetz MJ; Tager HS
    J Biol Chem; 1988 Dec; 263(35):19210-7. PubMed ID: 2848817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Glucagon binding by isolated chick hepatocytes].
    Ukhanova MV; Leĭbush BN
    Zh Evol Biokhim Fiziol; 1988; 24(4):509-15. PubMed ID: 2849846
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative analysis of internalization of glucagon by isolated hepatocytes.
    Horwitz EM; Gurd RS
    Arch Biochem Biophys; 1988 Dec; 267(2):758-69. PubMed ID: 2463785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of nonspecific hydrophobic interactions in the biological activity of N epsilon-acyl derivatives of glucagon. Studies of conformation, receptor binding, and adenylate cyclase activation.
    Carrey EA; Epand RM
    J Biol Chem; 1982 Sep; 257(18):10624-30. PubMed ID: 6286664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of oxidation of the Met27 residue of [125I]monoiodoglucagon on receptor-binding affinity.
    Sonne O; Larsen UD; Markussen J
    Hoppe Seylers Z Physiol Chem; 1982 Jan; 363(1):95-101. PubMed ID: 6277759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of distinct receptor complexes that account for high-and low-affinity glucagon binding to hepatic plasma membranes.
    Mason JC; Tager HS
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6835-9. PubMed ID: 2995990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of an essential serine residue in glucagon: implication for an active site triad.
    Unson CG; Merrifield RB
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):454-8. PubMed ID: 8290548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hepatic glucagon receptor: a comparative study of the regulatory and structural properties.
    Padrell E; Herberg JT; Monsatirsky B; Floyd G; Premont RT; Iyengar R
    Endocrinology; 1987 Jun; 120(6):2316-25. PubMed ID: 3032585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.