These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 30200455)

  • 1. A Novel Strategy for Creating Tissue-Engineered Biomimetic Blood Vessels Using 3D Bioprinting Technology.
    Xu Y; Hu Y; Liu C; Yao H; Liu B; Mi S
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and efficient
    Yao R; Alkhawtani AYF; Chen R; Luan J; Xu M
    Int J Bioprint; 2019; 5(2.1):194. PubMed ID: 32596542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dragging 3D printing technique controls pore sizes of tissue engineered blood vessels to induce spontaneous cellular assembly.
    Jeong HJ; Nam H; Kim JS; Cho S; Park HH; Cho YS; Jeon H; Jang J; Lee SJ
    Bioact Mater; 2024 Jan; 31():590-602. PubMed ID: 37876874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing.
    Shin S; Brunel LG; Cai B; Kilian D; Roth JG; Seymour AJ; Heilshorn SC
    Adv Funct Mater; 2023 Dec; 33(50):. PubMed ID: 38646474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation Analysis of the Influence of Nozzle Structure Parameters on Material Controllability.
    Liu H; Zheng G; Cheng X; Yang X; Zhao G
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing.
    Shin S; Brunel LG; Cai B; Kilian D; Roth JG; Seymour AJ; Heilshorn SC
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal co-cultivation of smooth muscle cell and endothelial cell layers to construct
    Choi JS; Seo TS
    Biomicrofluidics; 2019 Jan; 13(1):014115. PubMed ID: 30867885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale bioprinting of vascularized models.
    Miri AK; Khalilpour A; Cecen B; Maharjan S; Shin SR; Khademhosseini A
    Biomaterials; 2019 Apr; 198():204-216. PubMed ID: 30244825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D biofabrication of vascular networks for tissue regeneration: A report on recent advances.
    Sarker MD; Naghieh S; Sharma NK; Chen X
    J Pharm Anal; 2018 Oct; 8(5):277-296. PubMed ID: 30345141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of Perfusable, Biocompatible Vessel-like Channels with dECM-Based Bioinks and Living Cells.
    Klak M; Rachalewski M; Filip A; Dobrzański T; Berman A; Wszoła M
    Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Bioprinting: The Ultimate Pinnacle of Tissue Engineering.
    Arumugam P; Kaarthikeyan G; Eswaramoorthy R
    Cureus; 2024 Apr; 16(4):e58029. PubMed ID: 38738080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coaxial 3D Bioprinting Process Research and Performance Tests on Vascular Scaffolds.
    Sun J; Gong Y; Xu M; Chen H; Shao H; Zhou R
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells.
    Singh AA; Shetty DK; Jacob AG; Bayraktar S; Sinha S
    Front Cardiovasc Med; 2024; 11():1349548. PubMed ID: 38440211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinted vascular tissue: Assessing functions from cellular, tissue to organ levels.
    Jiang H; Li X; Chen T; Liu Y; Wang Q; Wang Z; Jia J
    Mater Today Bio; 2023 Dec; 23():100846. PubMed ID: 37953757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges.
    Fang W; Yang M; Wang L; Li W; Liu M; Jin Y; Wang Y; Yang R; Wang Y; Zhang K; Fu Q
    Int J Bioprint; 2023; 9(5):759. PubMed ID: 37457925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges.
    Hou YC; Cui X; Qin Z; Su C; Zhang G; Tang JN; Li JA; Zhang JY
    Int J Bioprint; 2023; 9(4):740. PubMed ID: 37323481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering.
    Zhe M; Wu X; Yu P; Xu J; Liu M; Yang G; Xiang Z; Xing F; Ritz U
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting Technologies and Bioinks for Vascular Model Establishment.
    Kong Z; Wang X
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges.
    Wang X; Chan V; Corridon PR
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.