BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30200499)

  • 1. Intelligent Land-Vehicle Model Transfer Trajectory Planning Method Based on Deep Reinforcement Learning.
    Yu L; Shao X; Wei Y; Zhou K
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces.
    Shi J; Li K; Piao C; Gao J; Chen L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning.
    Zhang K; Pu T; Zhang Q; Nie Z
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning.
    Guo S; Zhang X; Zheng Y; Du AY
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intelligent Vehicle Decision-Making and Trajectory Planning Method Based on Deep Reinforcement Learning in the Frenet Space.
    Wang J; Chu L; Zhang Y; Mao Y; Guo C
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.
    Wang L; Zhao X; Su H; Tang G
    Springerplus; 2016; 5(1):1150. PubMed ID: 27504248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Reinforcement Learning Based Trajectory Planning Under Uncertain Constraints.
    Chen L; Jiang Z; Cheng L; Knoll AC; Zhou M
    Front Neurorobot; 2022; 16():883562. PubMed ID: 35586262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of news dissemination push mode by intelligent edge computing technology for deep learning.
    DeGe J; Sang S
    Sci Rep; 2024 Mar; 14(1):6671. PubMed ID: 38509163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of deep learning algorithm and digital media art in all-media intelligent electronic music system.
    Zheng Y
    PLoS One; 2020; 15(10):e0240492. PubMed ID: 33075083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path-Tracking Control Strategy of Unmanned Vehicle Based on DDPG Algorithm.
    Yao J; Ge Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
    Han G; Fu W; Wang W; Wu Z
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28556817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Reinforcement Learning-Based MPPT Control for PV Systems under Partial Shading Condition.
    Phan BC; Lai YC; Lin CE
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Vehicle Recognition Algorithm Based on Deep Transfer Learning with a Multiple Feature Subspace Distribution.
    Wang H; Yu Y; Cai Y; Chen L; Chen X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement Learning.
    Zhang S; Xia Q; Chen M; Cheng S
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hierarchical Framework for Quadruped Robots Gait Planning Based on DDPG.
    Li Y; Chen Z; Wu C; Mao H; Sun P
    Biomimetics (Basel); 2023 Aug; 8(5):. PubMed ID: 37754133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application improvement of A* algorithm in intelligent vehicle trajectory planning.
    Xiong X; Min H; Yu Y; Wang P
    Math Biosci Eng; 2020 Nov; 18(1):1-21. PubMed ID: 33525078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV's Autonomous Motion Planning in Complex Unknown Environments.
    Hu Z; Wan K; Gao X; Zhai Y; Wang Q
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.