These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30200523)
1. Nitrate Accumulation and Expression Patterns of Genes Involved in Nitrate Transport and Assimilation in Spinach. Wang X; Cai X; Xu C; Wang S; Dai S; Wang Q Molecules; 2018 Sep; 23(9):. PubMed ID: 30200523 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of the NPF, NRT2 and NRT3 in spinach. Wang X; Cai X; Xu C; Wang Q Plant Physiol Biochem; 2021 Jan; 158():297-307. PubMed ID: 33243709 [TBL] [Abstract][Full Text] [Related]
3. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants. Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598 [TBL] [Abstract][Full Text] [Related]
4. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea L.) genotypes by inhibiting root uptake of nitrate. Liu X; Lu L; Chen Q; Ding W; Dai P; Hu Y; Yu Y; Jin C; Lin X Food Chem; 2015 Nov; 186():312-8. PubMed ID: 25976827 [TBL] [Abstract][Full Text] [Related]
5. Expression Analysis of Oxalate Metabolic Pathway Genes Reveals Oxalate Regulation Patterns in Spinach. Cai X; Ge C; Xu C; Wang X; Wang S; Wang Q Molecules; 2018 May; 23(6):. PubMed ID: 29861493 [TBL] [Abstract][Full Text] [Related]
6. Spinach 14-3-3 protein interacts with the plasma membrane H(+)-ATPase and nitrate reductase in response to excess nitrate stress. Xu H; Zhao X; Guo C; Chen L; Li K Plant Physiol Biochem; 2016 Sep; 106():187-97. PubMed ID: 27161584 [TBL] [Abstract][Full Text] [Related]
7. Influences of lead (II) chloride on the nitrogen metabolism of spinach. Wu X; Liu C; Qu C; Huang H; Liu X; Chen L; Su M; Hong F Biol Trace Elem Res; 2008 Mar; 121(3):258-65. PubMed ID: 17955201 [TBL] [Abstract][Full Text] [Related]
8. Short-term alteration of nitrogen supply prior to harvest affects quality in hydroponic-cultivated spinach (Spinacia oleracea). Lin XY; Liu XX; Zhang YP; Zhou YQ; Hu Y; Chen QH; Zhang YS; Jin CW J Sci Food Agric; 2014 Mar; 94(5):1020-5. PubMed ID: 24038064 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots. Zanin L; Zamboni A; Monte R; Tomasi N; Varanini Z; Cesco S; Pinton R Plant Cell Physiol; 2015 Mar; 56(3):532-48. PubMed ID: 25524070 [TBL] [Abstract][Full Text] [Related]
10. Impact of nitrogen fertilizer type and application rate on growth, nitrate accumulation, and postharvest quality of spinach. Gülüt KY; Şentürk GG PeerJ; 2024; 12():e17726. PubMed ID: 39011375 [TBL] [Abstract][Full Text] [Related]
11. Cloning of a nitrate reductase inactivator (NRI) cDNA from Spinacia oleracea L. and expression of mRNA and protein of NRI in cultured spinach cells. Sonoda M; Ide H; Nakayama S; Sasaki A; Kitazaki S; Sato T; Nakagawa H Planta; 2003 Apr; 216(6):961-8. PubMed ID: 12687363 [TBL] [Abstract][Full Text] [Related]
12. Higher anthocyanin accumulation associated with higher transcription levels of anthocyanin biosynthesis genes in spinach. Cai X; Lin L; Wang X; Xu C; Wang Q Genome; 2018 Jul; 61(7):487-496. PubMed ID: 29787681 [TBL] [Abstract][Full Text] [Related]
13. Changes in growth, physiology, and photosynthetic capacity of spinach (Spinacia oleracea L.) under different nitrate levels. Han K; Zhang J; Wang C; Yang Y; Chang Y; Gao Y; Liu Y; Xie J PLoS One; 2023; 18(3):e0283787. PubMed ID: 37000779 [TBL] [Abstract][Full Text] [Related]
14. Comparative analysis of tissue-specific transcriptomic responses to nitrogen stress in spinach (Spinacia oleracea). Joshi V; Joshi M; Penalosa A PLoS One; 2020; 15(5):e0232011. PubMed ID: 32374731 [TBL] [Abstract][Full Text] [Related]
15. The nitrate reductase gene isolated from DNA of cultured spinach cells. Tamura N; Takahashi H; Takeba G; Satoi T; Nakagawa H Biochim Biophys Acta; 1997 Apr; 1338(2):151-5. PubMed ID: 9128133 [TBL] [Abstract][Full Text] [Related]
16. Cerium relieves the inhibition of nitrogen metabolism of spinach caused by magnesium deficiency. Yin S; Ze Y; Liu C; Li N; Zhou M; Duan Y; Hong F Biol Trace Elem Res; 2009 Dec; 132(1-3):247-58. PubMed ID: 19418026 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Bai X; Long J; He X; Yan J; Chen X; Tan Y; Li K; Chen L; Xu H Sci Rep; 2016 May; 6():26400. PubMed ID: 27211528 [TBL] [Abstract][Full Text] [Related]
18. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Yang F; Hong F; You W; Liu C; Gao F; Wu C; Yang P Biol Trace Elem Res; 2006 May; 110(2):179-90. PubMed ID: 16757845 [TBL] [Abstract][Full Text] [Related]
19. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Prosser IM; Purves JV; Saker LR; Clarkson DT J Exp Bot; 2001 Jan; 52(354):113-21. PubMed ID: 11181720 [TBL] [Abstract][Full Text] [Related]
20. Whole-plant and organ-level nitrogen isotope discrimination indicates modification of partitioning of assimilation, fluxes and allocation of nitrogen in knockout lines of Arabidopsis thaliana. Kalcsits LA; Guy RD Physiol Plant; 2013 Oct; 149(2):249-59. PubMed ID: 23414092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]