These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30200575)

  • 1. Synthesizing and Reconstructing Missing Sensory Modalities in Behavioral Context Recognition.
    Saeed A; Ozcelebi T; Lukkien J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method for Sensor-Based Activity Recognition in Missing Data Scenario.
    Hossain T; Ahad MAR; Inoue S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32650486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PC-GAIN: Pseudo-label conditional generative adversarial imputation networks for incomplete data.
    Wang Y; Li D; Li X; Yang M
    Neural Netw; 2021 Sep; 141():395-403. PubMed ID: 34139636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A joint learning method for incomplete and imbalanced data in electronic health record based on generative adversarial networks.
    Weng X; Song H; Lin Y; Wu Y; Zhang X; Liu B; Yang J
    Comput Biol Med; 2024 Jan; 168():107687. PubMed ID: 38007974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detracking Autoencoding Conditional Generative Adversarial Network: Improved Generative Adversarial Network Method for Tabular Missing Value Imputation.
    Liu J; Duan Z; Hu X; Zhong J; Yin Y
    Entropy (Basel); 2024 May; 26(5):. PubMed ID: 38785651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel missing data imputation approach based on clinical conditional Generative Adversarial Networks applied to EHR datasets.
    Bernardini M; Doinychko A; Romeo L; Frontoni E; Amini MR
    Comput Biol Med; 2023 Sep; 163():107188. PubMed ID: 37393785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Sensor Data Generation for Health Applications: A Supervised Deep Learning Approach.
    Norgaard S; Saeedi R; Sasani K; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1164-1167. PubMed ID: 30440598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovering from missing data in population imaging - Cardiac MR image imputation via conditional generative adversarial nets.
    Xia Y; Zhang L; Ravikumar N; Attar R; Piechnik SK; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2021 Jan; 67():101812. PubMed ID: 33129140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.
    Pires IM; Hussain F; Marques G; Garcia NM
    Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Deep Neural Network Method for HAR-Based Team Training Using Body-Worn Inertial Sensors.
    Fan YC; Tseng YH; Wen CY
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Utility of Unsupervised Machine Learning in Anatomic Pathology.
    McAlpine ED; Michelow P; Celik T
    Am J Clin Pathol; 2022 Jan; 157(1):5-14. PubMed ID: 34302331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.
    Dai Z; Bu Z; Long Q
    Proc Int Conf Mach Learn Appl; 2021 Dec; 2021():791-798. PubMed ID: 35169788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiments on Adversarial Examples for Deep Learning Model Using Multimodal Sensors.
    Kurniawan A; Ohsita Y; Murata M
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network.
    Huang P; Li D; Jiao Z; Wei D; Cao B; Mo Z; Wang Q; Zhang H; Shen D
    Med Image Anal; 2022 Jul; 79():102472. PubMed ID: 35567847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generative adversarial networks for imputing missing data for big data clinical research.
    Dong W; Fong DYT; Yoon JS; Wan EYF; Bedford LE; Tang EHM; Lam CLK
    BMC Med Res Methodol; 2021 Apr; 21(1):78. PubMed ID: 33879090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint variational autoencoders for multimodal imputation and embedding.
    Kalafut NC; Huang X; Wang D
    Nat Mach Intell; 2023 Jun; 5(6):631-642. PubMed ID: 39175596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning with Privileged Information via Adversarial Discriminative Modality Distillation.
    Garcia NC; Morerio P; Murino V
    IEEE Trans Pattern Anal Mach Intell; 2020 Oct; 42(10):2581-2593. PubMed ID: 31331879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel transformer autoencoder for multi-modal emotion recognition with incomplete data.
    Cheng C; Liu W; Fan Z; Feng L; Jia Z
    Neural Netw; 2024 Apr; 172():106111. PubMed ID: 38237444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Augmentation with Cross-Modal Variational Autoencoders (DACMVA) for Cancer Survival Prediction.
    Rajaram S; Mitchell CS
    Information (Basel); 2024 Jan; 15(1):. PubMed ID: 38665395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.