These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30200586)

  • 1. Simple and Label-Free Fluorescent Detection of Melamine Based on Melamine⁻Thymine Recognition.
    Yang H; Wang J; Wu Q; Wang Y; Li L; Ding B
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30200586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exonuclease III-assisted strand displacement reaction-driven cyclic generation of G-quadruplex strategy for homogeneous fluorescent detection of melamine.
    Chen P; Huang K; Zhang P; Sawyer E; Wu Z; Wei X; Ying B; Geng J
    Talanta; 2019 Oct; 203():255-260. PubMed ID: 31202335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SYBR Green I promotes melamine binding to poly-thymine DNA and FRET-based ratiometric sensing.
    He F; Shen Y; Liu J
    Analyst; 2021 Mar; 146(5):1642-1649. PubMed ID: 33595033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence, turn-on detection of melamine based on its dual functions as fluorescence enhancer of DNA-AgNCs and Hg(II)-scavenger.
    Jeong S; Kwon WY; Hwang SH; Shin J; Kim Y; Lee M; Park KS
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):621-625. PubMed ID: 30873874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing.
    Zhu HW; Dai WX; Yu XD; Xu JJ; Chen HY
    Talanta; 2015 Nov; 144():642-7. PubMed ID: 26452872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Singlet Oxygen Generation from the Double Strand DNA-SYBR Green I Complex Mediated by T-Melamine-T Mismatch for Visual Detection of Melamine.
    Hu H; Zhang J; Ding Y; Zhang X; Xu K; Hou X; Wu P
    Anal Chem; 2017 May; 89(9):5101-5106. PubMed ID: 28382824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A "turn-on" fluorescent sensor for ultrasensitive detection of melamine based on a new fluorescence probe and AuNPs.
    Lu Q; Zhao J; Xue S; Yin P; Zhang Y; Yao S
    Analyst; 2015 Feb; 140(4):1155-60. PubMed ID: 25512948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of melamine and melamine-Cu(II) complexes in milk using a DNA-Ag hydrocolloid as the sensor.
    Mu WY; Huang PZ; Chen QY; Wang W
    Food Chem; 2020 May; 311():125889. PubMed ID: 31767483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melamine-Induced Decomposition and Anti-FRET Effect from a Self-Assembled Complex of Rhodamine 6G and DNA-Stabilized Silver Nanoclusters Used for Dual-Emitting Ratiometric and Naked-Eye-Visible Fluorescence Detection.
    Fu Y; Jin H; Bu X; Gui R
    J Agric Food Chem; 2018 Sep; 66(37):9819-9827. PubMed ID: 30160493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring the adulteration of milk with melamine: a visualised sensor array approach.
    Yang L; Huo D; Jiang Y; Hou C; Zhang S
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(5):786-95. PubMed ID: 23768006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual hairpin-like molecular beacon based on coralyne-adenosine interaction for sensing melamine in dairy products.
    Wang G; Zhu Y; Chen L; Zhang X
    Talanta; 2014 Nov; 129():398-403. PubMed ID: 25127611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free fluorescence strategy for sensitive detection of exonuclease activity using SYBR Green I as probe.
    Xu M; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():22-6. PubMed ID: 26117197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric determination of melamine in milk using unmodified silver nanoparticles.
    Kumar N; Kumar H; Mann B; Seth R
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 156():89-97. PubMed ID: 26654965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile detection of melamine by a FAM-aptamer-G-quadruplex construct.
    Su R; Zheng H; Dong S; Sun R; Qiao S; Sun H; Ma X; Zhang T; Sun C
    Anal Bioanal Chem; 2019 May; 411(12):2521-2530. PubMed ID: 30863884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles.
    Huang H; Li L; Zhou G; Liu Z; Ma Q; Feng Y; Zeng G; Tinnefeld P; He Z
    Talanta; 2011 Aug; 85(2):1013-9. PubMed ID: 21726732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Aptamer-Based Biosensor for Direct, Label-Free Detection of Melamine in Raw Milk.
    Kaneko N; Horii K; Akitomi J; Kato S; Shiratori I; Waga I
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handheld fluorometer for in-situ melamine detection via interference synthesis of dsDNA-templated copper nanoparticles.
    Nambannor Kunnath R; Venukumar A; Gorthi SS
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jul; 235():118304. PubMed ID: 32251893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual detection of melamine in milk products by label-free gold nanoparticles.
    Guo L; Zhong J; Wu J; Fu F; Chen G; Zheng X; Lin S
    Talanta; 2010 Oct; 82(5):1654-8. PubMed ID: 20875559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots.
    Zhang M; Cao X; Li H; Guan F; Guo J; Shen F; Luo Y; Sun C; Zhang L
    Food Chem; 2012 Dec; 135(3):1894-900. PubMed ID: 22953938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligonucleotide-stabilized fluorescent silver nanoclusters for turn-on detection of melamine.
    Han S; Zhu S; Liu Z; Hu L; Parveen S; Xu G
    Biosens Bioelectron; 2012; 36(1):267-70. PubMed ID: 22575638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.