These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 30200760)

  • 1. Implications of Pyran Cyclization and Pterin Conformation on Oxidized Forms of the Molybdenum Cofactor.
    Gisewhite DR; Yang J; Williams BR; Esmail A; Stein B; Kirk ML; Burgmayer SJN
    J Am Chem Soc; 2018 Oct; 140(40):12808-12818. PubMed ID: 30200760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and reversible pyran formation in molybdenum pyranopterin dithiolene models of the molybdenum cofactor.
    Williams BR; Fu Y; Yap GP; Burgmayer SJ
    J Am Chem Soc; 2012 Dec; 134(48):19584-7. PubMed ID: 23157708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Pyran Formation in the Molybdenum Cofactor: Protonation of Quinoxalyl-Dithiolene Promoting Pyran Cyclization.
    Gisewhite DR; Nagelski AL; Cummins DC; Yap GPA; Burgmayer SJN
    Inorg Chem; 2019 Apr; 58(8):5134-5144. PubMed ID: 30942584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of YdhV as the First Molybdoenzyme Binding a Bis-Mo-MPT Cofactor in Escherichia coli.
    Reschke S; Duffus BR; Schrapers P; Mebs S; Teutloff C; Dau H; Haumann M; Leimkühler S
    Biochemistry; 2019 Apr; 58(17):2228-2242. PubMed ID: 30945846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation and Non-Innocent Ligand Behavior in Pyranopterin Dithiolene Molybdenum Complexes.
    Gates C; Varnum H; Getty C; Loui N; Chen J; Kirk ML; Yang J; Nieter Burgmayer SJ
    Inorg Chem; 2022 Sep; 61(35):13728-13742. PubMed ID: 36000991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-Dependent Pyranopterin Cyclization in Molybdenum Cofactor Model Complexes.
    Williams BR; Gisewhite D; Kalinsky A; Esmail A; Burgmayer SJ
    Inorg Chem; 2015 Sep; 54(17):8214-22. PubMed ID: 25942001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopic characterization of the molybdopterin active site of DMSO reductase.
    Kilpatrick L; Rajagopalan KV; Hilton J; Bastian NR; Stiefel EI; Pilato RS; Spiro TG
    Biochemistry; 1995 Mar; 34(9):3032-9. PubMed ID: 7893715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of molybdenum(4+) quinoxalyldithiolenes as models for the noninnocent pyranopterin in the molybdenum cofactor.
    Matz KG; Mtei RP; Rothstein R; Kirk ML; Burgmayer SJ
    Inorg Chem; 2011 Oct; 50(20):9804-15. PubMed ID: 21894968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and spectroscopy of model molybdopterin complexes.
    Burgmayer SJ; Kim M; Petit R; Rothkopf A; Kim A; BelHamdounia S; Hou Y; Somogyi A; Habel-Rodriguez D; Williams A; Kirk ML
    J Inorg Biochem; 2007 Nov; 101(11-12):1601-16. PubMed ID: 17765313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing Our Understanding of Pyranopterin-Dithiolene Contributions to Moco Enzyme Catalysis.
    Burgmayer SJN; Kirk ML
    Molecules; 2023 Nov; 28(22):. PubMed ID: 38005178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which functional groups of the molybdopterin ligand should be considered when modeling the active sites of the molybdenum and tungsten cofactors? A density functional theory study.
    Ryde U; Schulzke C; Starke K
    J Biol Inorg Chem; 2009 Sep; 14(7):1053-64. PubMed ID: 19479286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational Probes of Molybdenum Cofactor-Protein Interactions in Xanthine Dehydrogenase.
    Dong C; Yang J; Reschke S; Leimkühler S; Kirk ML
    Inorg Chem; 2017 Jun; 56(12):6830-6837. PubMed ID: 28590138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biosynthesis of the molybdenum cofactors in Escherichia coli.
    Leimkühler S
    Environ Microbiol; 2020 Jun; 22(6):2007-2026. PubMed ID: 32239579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination.
    Schindelin H; Kisker C; Hilton J; Rajagopalan KV; Rees DC
    Science; 1996 Jun; 272(5268):1615-21. PubMed ID: 8658134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family.
    Lim BS; Donahue JP; Holm RH
    Inorg Chem; 2000 Jan; 39(2):263-73. PubMed ID: 11272534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biosynthesis of the molybdenum cofactors.
    Mendel RR; Leimkühler S
    J Biol Inorg Chem; 2015 Mar; 20(2):337-47. PubMed ID: 24980677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox reactions of the pyranopterin system of the molybdenum cofactor.
    Nieter Burgmayer SJ; Pearsall DL; Blaney SM; Moore EM; Sauk-Schubert C
    J Biol Inorg Chem; 2004 Jan; 9(1):59-66. PubMed ID: 14628171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli.
    Reschke S; Sigfridsson KG; Kaufmann P; Leidel N; Horn S; Gast K; Schulzke C; Haumann M; Leimkühler S
    J Biol Chem; 2013 Oct; 288(41):29736-45. PubMed ID: 24003231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency.
    Daniels JN; Wuebbens MM; Rajagopalan KV; Schindelin H
    Biochemistry; 2008 Jan; 47(2):615-26. PubMed ID: 18092812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.