These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30200760)

  • 41. The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor.
    Santamaria-Araujo JA; Fischer B; Otte T; Nimtz M; Mendel RR; Wray V; Schwarz G
    J Biol Chem; 2004 Apr; 279(16):15994-9. PubMed ID: 14761975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase.
    Chan MK; Mukund S; Kletzin A; Adams MW; Rees DC
    Science; 1995 Mar; 267(5203):1463-9. PubMed ID: 7878465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a molybdopterin-containing molybdenum cofactor in xanthine dehydrogenase from Pseudomonas aeruginosa.
    Johnson JL; Chaudhury M; Rajagopalan KV
    Biofactors; 1991 Jun; 3(2):103-7. PubMed ID: 1654922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent developments in the study of molybdoenzyme models.
    Basu P; Burgmayer SJ
    J Biol Inorg Chem; 2015 Mar; 20(2):373-83. PubMed ID: 25578808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Function of MoaB proteins in the biosynthesis of the molybdenum and tungsten cofactors.
    Bevers LE; Hagedoorn PL; Santamaria-Araujo JA; Magalon A; Hagen WR; Schwarz G
    Biochemistry; 2008 Jan; 47(3):949-56. PubMed ID: 18154309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monoanionic molybdenum and tungsten tris(dithiolene) complexes: a multifrequency EPR study.
    Sproules S; Banerjee P; Weyhermüller T; Yan Y; Donahue JP; Wieghardt K
    Inorg Chem; 2011 Aug; 50(15):7106-22. PubMed ID: 21699192
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-Containing Formate Dehydrogenases, a Personal View.
    Leimkühler S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513211
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution.
    Schneider F; Löwe J; Huber R; Schindelin H; Kisker C; Knäblein J
    J Mol Biol; 1996 Oct; 263(1):53-69. PubMed ID: 8890912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin binding, molybdenum insertion, and molybdenum cofactor stabilization.
    Kuper J; Palmer T; Mendel RR; Schwarz G
    Proc Natl Acad Sci U S A; 2000 Jun; 97(12):6475-80. PubMed ID: 10823911
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic Investigation of cPMP Synthase in Molybdenum Cofactor Biosynthesis Using an Uncleavable Substrate Analogue.
    Hover BM; Lilla EA; Yokoyama K
    Biochemistry; 2015 Dec; 54(49):7229-36. PubMed ID: 26575208
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis, Redox and Spectroscopic Properties of Pterin of Molybdenum Cofactors.
    Colston KJ; Basu P
    Molecules; 2022 May; 27(10):. PubMed ID: 35630801
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molybdenum cofactor biosynthesis and deficiency.
    Schwarz G
    Cell Mol Life Sci; 2005 Dec; 62(23):2792-810. PubMed ID: 16261263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-Dithiolene Bonding Contributions to Pyranopterin Molybdenum Enzyme Reactivity.
    Yang J; Enemark JH; Kirk ML
    Inorganics (Basel); 2020 Mar; 8(3):. PubMed ID: 34327225
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis.
    Hover BM; Tonthat NK; Schumacher MA; Yokoyama K
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6347-52. PubMed ID: 25941396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus.
    Schrapers P; Hartmann T; Kositzki R; Dau H; Reschke S; Schulzke C; Leimkühler S; Haumann M
    Inorg Chem; 2015 Apr; 54(7):3260-71. PubMed ID: 25803130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Making Moco: A Personal History.
    Burgmayer SJN
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The active site structure and catalytic mechanism of arsenite oxidase.
    Warelow TP; Pushie MJ; Cotelesage JJH; Santini JM; George GN
    Sci Rep; 2017 May; 7(1):1757. PubMed ID: 28496149
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins.
    Gutzke G; Fischer B; Mendel RR; Schwarz G
    J Biol Chem; 2001 Sep; 276(39):36268-74. PubMed ID: 11459846
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Promotion of oxygen atom transfer in Mo and W enzymes by bicyclic forms of the pterin cofactor.
    McNamara JP; Joule JA; Hillier IH; Garner CD
    Chem Commun (Camb); 2005 Jan; (2):177-9. PubMed ID: 15724177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.