These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30201458)
21. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087 [TBL] [Abstract][Full Text] [Related]
22. Novel machine learning models to predict pneumonia events in supratentorial intracerebral hemorrhage populations: An analysis of the Zheng Y; Lin YX; He Q; Zhuo LY; Huang W; Gao ZY; Chen RL; Zhao MP; Xie ZF; Ma K; Fang WH; Wang DL; Chen JC; Kang DZ; Lin FX Front Neurol; 2022; 13():955271. PubMed ID: 36090880 [TBL] [Abstract][Full Text] [Related]
23. Comparison of Conventional Logistic Regression and Machine Learning Methods for Predicting Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Multicentric Observational Cohort Study. Hu P; Li Y; Liu Y; Guo G; Gao X; Su Z; Wang L; Deng G; Yang S; Qi Y; Xu Y; Ye L; Sun Q; Nie X; Sun Y; Li M; Zhang H; Chen Q Front Aging Neurosci; 2022; 14():857521. PubMed ID: 35783143 [TBL] [Abstract][Full Text] [Related]
24. The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models. Ye Z; An S; Gao Y; Xie E; Zhao X; Guo Z; Li Y; Shen N; Ren J; Zheng J Eur J Med Res; 2023 Jan; 28(1):33. PubMed ID: 36653875 [TBL] [Abstract][Full Text] [Related]
25. A systematic comparison of machine learning algorithms to develop and validate prediction model to predict heart failure risk in middle-aged and elderly patients with periodontitis (NHANES 2009 to 2014). Wang Y; Xiao Y; Zhang Y Medicine (Baltimore); 2023 Aug; 102(34):e34878. PubMed ID: 37653785 [TBL] [Abstract][Full Text] [Related]
26. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality. Kanwal F; Taylor TJ; Kramer JR; Cao Y; Smith D; Gifford AL; El-Serag HB; Naik AD; Asch SM JAMA Netw Open; 2020 Nov; 3(11):e2023780. PubMed ID: 33141161 [TBL] [Abstract][Full Text] [Related]
28. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy. Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668 [TBL] [Abstract][Full Text] [Related]
29. Applications of Machine Learning Model for Prediction of Outcomes in Primary Pontine Hemorrhage. Yindeedej V; Setprapha C; Komarapaj C; Osirichaivait K; Nimmannitya P; Noiphithak R World Neurosurg; 2023 Jul; 175():e1348-e1359. PubMed ID: 37172714 [TBL] [Abstract][Full Text] [Related]
30. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
31. Prognosticating Functional Outcome After Intracerebral Hemorrhage: The ICHOP Score. Gupta VP; Garton ALA; Sisti JA; Christophe BR; Lord AS; Lewis AK; Frey HP; Claassen J; Connolly ES World Neurosurg; 2017 May; 101():577-583. PubMed ID: 28242488 [TBL] [Abstract][Full Text] [Related]
32. Which supervised machine learning algorithm can best predict achievement of minimum clinically important difference in neck pain after surgery in patients with cervical myelopathy? A QOD study. Park C; Mummaneni PV; Gottfried ON; Shaffrey CI; Tang AJ; Bisson EF; Asher AL; Coric D; Potts EA; Foley KT; Wang MY; Fu KM; Virk MS; Knightly JJ; Meyer S; Park P; Upadhyaya C; Shaffrey ME; Buchholz AL; Tumialán LM; Turner JD; Sherrod BA; Agarwal N; Chou D; Haid RW; Bydon M; Chan AK Neurosurg Focus; 2023 Jun; 54(6):E5. PubMed ID: 37283449 [TBL] [Abstract][Full Text] [Related]
33. Predicting postoperative outcomes in lumbar spinal fusion: development of a machine learning model. Schönnagel L; Caffard T; Vu-Han TL; Zhu J; Nathoo I; Finos K; Camino-Willhuber G; Tani S; Guven AE; Haffer H; Muellner M; Arzani A; Chiapparelli E; Amoroso K; Shue J; Duculan R; Pumberger M; Zippelius T; Sama AA; Cammisa FP; Girardi FP; Mancuso CA; Hughes AP Spine J; 2024 Feb; 24(2):239-249. PubMed ID: 37866485 [TBL] [Abstract][Full Text] [Related]
34. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning]. Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445 [TBL] [Abstract][Full Text] [Related]
35. A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage. Patel SJ; Chamberlain DB; Chamberlain JM Acad Emerg Med; 2018 Dec; 25(12):1463-1470. PubMed ID: 30382605 [TBL] [Abstract][Full Text] [Related]
36. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery. Lee HC; Yoon HK; Nam K; Cho YJ; Kim TK; Kim WH; Bahk JH J Clin Med; 2018 Oct; 7(10):. PubMed ID: 30282956 [TBL] [Abstract][Full Text] [Related]
37. Stroke prognostication for discharge planning with machine learning: A derivation study. Bacchi S; Oakden-Rayner L; Menon DK; Jannes J; Kleinig T; Koblar S J Clin Neurosci; 2020 Sep; 79():100-103. PubMed ID: 33070874 [TBL] [Abstract][Full Text] [Related]
38. Prediction of Acute Kidney Injury in Intracerebral Hemorrhage Patients Using Machine Learning. She S; Shen Y; Luo K; Zhang X; Luo C Neuropsychiatr Dis Treat; 2023; 19():2765-2773. PubMed ID: 38106359 [TBL] [Abstract][Full Text] [Related]
39. Development of a predictive model for 1-year postoperative recovery in patients with lumbar disk herniation based on deep learning and machine learning. Chen Y; Lin F; Wang K; Chen F; Wang R; Lai M; Chen C; Wang R Front Neurol; 2024; 15():1255780. PubMed ID: 38919973 [TBL] [Abstract][Full Text] [Related]
40. Development of Machine-Learning Models to Predict Ambulation Outcomes Following Spinal Metastasis Surgery. Chavalparit P; Wilartratsami S; Santipas B; Ittichaiwong P; Veerakanjana K; Luksanapruksa P Asian Spine J; 2023 Dec; 17(6):1013-1023. PubMed ID: 38050361 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]