These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30201562)

  • 1. Gene immobilization on alginate/polycaprolactone fibers through electrophoretic deposition to promote in situ transfection efficiency and biocompatibility.
    Hu WW; Ting JC
    Int J Biol Macromol; 2019 Jan; 121():1337-1345. PubMed ID: 30201562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application.
    Hu WW; Hu ZC
    Int J Biol Macromol; 2018 Oct; 117():1169-1178. PubMed ID: 29883703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of an alginate/polycaprolactone composite scaffold for in situ transfection application.
    Hu WW; Wu YC; Hu ZC
    Carbohydr Polym; 2018 Mar; 183():29-36. PubMed ID: 29352887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of alginate on DNA delivery from layer-by-layer assembled films.
    Hu WW; Tsou SL
    Carbohydr Polym; 2014 Jan; 101():240-8. PubMed ID: 24299770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alginate/polycaprolactone composite fibers as multifunctional wound dressings.
    Hu WW; Lin YT
    Carbohydr Polym; 2022 Aug; 289():119440. PubMed ID: 35483853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled release of complexed DNA from polycaprolactone film: comparison of lipoplex and polyplex release.
    Ramgopal Y; Mondal D; Venkatraman SS; Godbey WT; Yuen GY
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):439-447. PubMed ID: 18823023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier.
    Arote R; Kim TH; Kim YK; Hwang SK; Jiang HL; Song HH; Nah JW; Cho MH; Cho CS
    Biomaterials; 2007 Feb; 28(4):735-44. PubMed ID: 17034844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate-graft-PEI as a gene delivery vector with high efficiency and low cytotoxicity.
    He W; Guo Z; Wen Y; Wang Q; Xie B; Zhu S; Wang Q
    J Biomater Sci Polym Ed; 2012; 23(1-4):315-31. PubMed ID: 21244745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coelectrospinning of chitosan/alginate fibers by dual-jet system for modulating material surfaces.
    Hu WW; Yu HN
    Carbohydr Polym; 2013 Jun; 95(2):716-27. PubMed ID: 23648033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular synthesis of folate conjugated ternary copolymers: polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery.
    Liu L; Zheng M; Renette T; Kissel T
    Bioconjug Chem; 2012 Jun; 23(6):1211-20. PubMed ID: 22548308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mastoid obliteration using 3D PCL scaffold in combination with alginate and rhBMP-2.
    Jang CH; Kim MS; Cho YB; Jang YS; Kim GH
    Int J Biol Macromol; 2013 Nov; 62():614-22. PubMed ID: 24145300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers.
    Hu WW; Lin CH; Hong ZJ
    Carbohydr Polym; 2019 Feb; 206():70-79. PubMed ID: 30553375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable particulate delivery of vascular endothelial growth factor plasmid from polycaprolactone/polyethylenimine electrospun nanofibers for the treatment of myocardial infarction.
    Che HL; Muthiah M; Ahn Y; Son S; Kim WJ; Seonwoo H; Chung JH; Cho CS; Park IK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7073-7. PubMed ID: 22103127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.
    Chen Q; Li W; Goudouri OM; Ding Y; Cabanas-Polo S; Boccaccini AR
    Colloids Surf B Biointerfaces; 2015 Jun; 130():199-206. PubMed ID: 25921640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyethyleneimine-associated polycaprolactone-Superparamagnetic iron oxide nanoparticles as a gene delivery vector.
    Kim MC; Lin MM; Sohn Y; Kim JJ; Kang BS; Kim DK
    J Biomed Mater Res B Appl Biomater; 2017 Jan; 105(1):145-154. PubMed ID: 26443109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier.
    Arote RB; Hwang SK; Yoo MK; Jere D; Jiang HL; Kim YK; Choi YJ; Nah JW; Cho MH; Cho CS
    J Gene Med; 2008 Nov; 10(11):1223-35. PubMed ID: 18773499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.
    Li H; Jiang F; Ye S; Wu Y; Zhu K; Wang D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():779-86. PubMed ID: 26952484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration.
    Kim M; Jung WK; Kim G
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1725-34. PubMed ID: 23584739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application.
    Ranjbar-Mohammadi M; Bahrami SH
    Int J Biol Macromol; 2016 Mar; 84():448-56. PubMed ID: 26706845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.