BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30201705)

  • 41. Natural Variation in Human Clocks.
    von Schantz M
    Adv Genet; 2017; 99():73-96. PubMed ID: 29050555
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae.
    Rund SS; Hou TY; Ward SM; Collins FH; Duffield GE
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):E421-30. PubMed ID: 21715657
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Meta-analysis of transcriptomic datasets identifies genes enriched in the mammalian circadian pacemaker.
    Brown LA; Williams J; Taylor L; Thomson RJ; Nolan PM; Foster RG; Peirson SN
    Nucleic Acids Res; 2017 Sep; 45(17):9860-9873. PubMed ID: 28973476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Getting into rhythm: developmental emergence of circadian clocks and behaviors.
    Poe AR; Mace KD; Kayser MS
    FEBS J; 2022 Nov; 289(21):6576-6588. PubMed ID: 34375504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Daily rhythms in gene expression of the human parasite Schistosoma mansoni.
    Rawlinson KA; Reid AJ; Lu Z; Driguez P; Wawer A; Coghlan A; Sankaranarayanan G; Buddenborg SK; Soria CD; McCarthy C; Holroyd N; Sanders M; Hoffmann KF; Wilcockson D; Rinaldi G; Berriman M
    BMC Biol; 2021 Dec; 19(1):255. PubMed ID: 34852797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
    Li JZ; Bunney BG; Meng F; Hagenauer MH; Walsh DM; Vawter MP; Evans SJ; Choudary PV; Cartagena P; Barchas JD; Schatzberg AF; Jones EG; Myers RM; Watson SJ; Akil H; Bunney WE
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9950-5. PubMed ID: 23671070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Likelihood-based tests for detecting circadian rhythmicity and differential circadian patterns in transcriptomic applications.
    Ding H; Meng L; Liu AC; Gumz ML; Bryant AJ; Mcclung CA; Tseng GC; Esser KA; Huo Z
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calorie restriction effects on circadian rhythms in gene expression are sex dependent.
    Astafev AA; Patel SA; Kondratov RV
    Sci Rep; 2017 Aug; 7(1):9716. PubMed ID: 28851928
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rhythmic Component Analysis Tool (RCAT): A Precise, Efficient and User-Friendly Tool for Circadian Clock Genes Analysis.
    Liu Z; Meng M; Zhang S; Qiu H; Liu Z; Huang M
    Interdiscip Sci; 2022 Mar; 14(1):269-278. PubMed ID: 34374039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomics of circadian rhythms in health and disease.
    Rijo-Ferreira F; Takahashi JS
    Genome Med; 2019 Dec; 11(1):82. PubMed ID: 31847894
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tempo: an unsupervised Bayesian algorithm for circadian phase inference in single-cell transcriptomics.
    Auerbach BJ; FitzGerald GA; Li M
    Nat Commun; 2022 Nov; 13(1):6580. PubMed ID: 36323668
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Age-dependent expression changes of circadian system-related genes reveal a potentially conserved link to aging.
    Barth E; Srivastava A; Wengerodt D; Stojiljkovic M; Axer H; Witte OW; Kretz A; Marz M
    Aging (Albany NY); 2021 Dec; 13(24):25694-25716. PubMed ID: 34923482
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TimeCycle: topology inspired method for the detection of cycling transcripts in circadian time-series data.
    Ness-Cohn E; Braun R
    Bioinformatics; 2021 Dec; 37(23):4405-4413. PubMed ID: 34175927
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrated 3D genome, epigenome and transcriptome analyses reveal transcriptional coordination of circadian rhythm in rice.
    Zhang Y; Chen G; Deng L; Gao B; Yang J; Ding C; Zhang Q; Ouyang W; Guo M; Wang W; Liu B; Zhang Q; Sung WK; Yan J; Li G; Li X
    Nucleic Acids Res; 2023 Sep; 51(17):9001-9018. PubMed ID: 37572350
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetics of Circadian Rhythms.
    Andreani TS; Itoh TQ; Yildirim E; Hwangbo DS; Allada R
    Sleep Med Clin; 2015 Dec; 10(4):413-21. PubMed ID: 26568119
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Screening of clock gene polymorphisms demonstrates association of a PER3 polymorphism with morningness-eveningness preference and circadian rhythm sleep disorder.
    Hida A; Kitamura S; Katayose Y; Kato M; Ono H; Kadotani H; Uchiyama M; Ebisawa T; Inoue Y; Kamei Y; Okawa M; Takahashi K; Mishima K
    Sci Rep; 2014 Sep; 4():6309. PubMed ID: 25201053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chronic circadian misalignment results in reduced longevity and large-scale changes in gene expression in Drosophila.
    Boomgarden AC; Sagewalker GD; Shah AC; Haider SD; Patel P; Wheeler HE; Dubowy CM; Cavanaugh DJ
    BMC Genomics; 2019 Jan; 20(1):14. PubMed ID: 30616504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study.
    Cho CH; Lee T; Kim MG; In HP; Kim L; Lee HJ
    J Med Internet Res; 2019 Apr; 21(4):e11029. PubMed ID: 30994461
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior.
    Yeung J; Naef F
    Trends Genet; 2018 Dec; 34(12):915-926. PubMed ID: 30309754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ribosome profiling reveals an important role for translational control in circadian gene expression.
    Jang C; Lahens NF; Hogenesch JB; Sehgal A
    Genome Res; 2015 Dec; 25(12):1836-47. PubMed ID: 26338483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.