These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30201720)

  • 41. Protein folding intermediates and pathways studied by hydrogen exchange.
    Englander SW
    Annu Rev Biophys Biomol Struct; 2000; 29():213-38. PubMed ID: 10940248
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Folding and association of the antibody domain CH3: prolyl isomerization preceeds dimerization.
    Thies MJ; Mayer J; Augustine JG; Frederick CA; Lilie H; Buchner J
    J Mol Biol; 1999 Oct; 293(1):67-79. PubMed ID: 10512716
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR and CD spectroscopy show that imino acid restriction of the unfolded state leads to efficient folding.
    Xu Y; Hyde T; Wang X; Bhate M; Brodsky B; Baum J
    Biochemistry; 2003 Jul; 42(29):8696-703. PubMed ID: 12873129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Parallel channels and rate-limiting steps in complex protein folding reactions: prolyl isomerization and the alpha subunit of Trp synthase, a TIM barrel protein.
    Wu Y; Matthews CR
    J Mol Biol; 2002 Oct; 323(2):309-25. PubMed ID: 12381323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Small protein domains fold inside the ribosome exit tunnel.
    Marino J; von Heijne G; Beckmann R
    FEBS Lett; 2016 Mar; 590(5):655-60. PubMed ID: 26879042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cotranslational Protein Folding inside the Ribosome Exit Tunnel.
    Nilsson OB; Hedman R; Marino J; Wickles S; Bischoff L; Johansson M; Müller-Lucks A; Trovato F; Puglisi JD; O'Brien EP; Beckmann R; von Heijne G
    Cell Rep; 2015 Sep; 12(10):1533-40. PubMed ID: 26321634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular determinants of a native-state prolyl isomerization.
    Jakob RP; Schmid FX
    J Mol Biol; 2009 Apr; 387(4):1017-31. PubMed ID: 19232524
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding.
    Frech C; Schmid FX
    J Biol Chem; 1995 Mar; 270(10):5367-74. PubMed ID: 7890650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-molecule approaches to prion protein misfolding.
    Yu H; Dee DR; Woodside MT
    Prion; 2013; 7(2):140-6. PubMed ID: 23357831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association of antibody chains at different stages of folding: prolyl isomerization occurs after formation of quaternary structure.
    Lilie H; Rudolph R; Buchner J
    J Mol Biol; 1995 Apr; 248(1):190-201. PubMed ID: 7731044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energetic coupling between native-state prolyl isomerization and conformational protein folding.
    Jakob RP; Schmid FX
    J Mol Biol; 2008 Apr; 377(5):1560-75. PubMed ID: 18325533
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.
    Kelkar DA; Khushoo A; Yang Z; Skach WR
    J Biol Chem; 2012 Jan; 287(4):2568-78. PubMed ID: 22128180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A small single-domain protein folds through the same pathway on and off the ribosome.
    Guinn EJ; Tian P; Shin M; Best RB; Marqusee S
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12206-12211. PubMed ID: 30409803
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lattice simulations of cotranslational folding of single domain proteins.
    Wang P; Klimov DK
    Proteins; 2008 Feb; 70(3):925-37. PubMed ID: 17803235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.
    Gloss LM; Simler BR; Matthews CR
    J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
    Evans MS; Sander IM; Clark PL
    J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The nature of protein folding pathways: the classical versus the new view.
    Baldwin RL
    J Biomol NMR; 1995 Feb; 5(2):103-9. PubMed ID: 7703696
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin.
    Rognoni L; Möst T; Žoldák G; Rief M
    Proc Natl Acad Sci U S A; 2014 Apr; 111(15):5568-73. PubMed ID: 24706888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cotranslational folding increases GFP folding yield.
    Ugrinov KG; Clark PL
    Biophys J; 2010 Apr; 98(7):1312-20. PubMed ID: 20371331
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autocatalyzed protein folding.
    Veeraraghavan S; Holzman TF; Nall BT
    Biochemistry; 1996 Aug; 35(33):10601-7. PubMed ID: 8718848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.