These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30201917)

  • 21. Energy band structure calculations based on screened Hartree-Fock exchange method: Si, AlP, AlAs, GaP, and GaAs.
    Shimazaki T; Asai Y
    J Chem Phys; 2010 Jun; 132(22):224105. PubMed ID: 20550388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal phase induced bandgap modifications in AlAs nanowires probed by resonant Raman spectroscopy.
    Funk S; Li A; Ercolani D; Gemmi M; Sorba L; Zardo I
    ACS Nano; 2013 Feb; 7(2):1400-7. PubMed ID: 23281738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Density Functional Theory Calculations Revealing Metal-like Band Structures and Work Function Variation for Ultrathin Gallium Arsenide (111) Surface Layers.
    Tan CS; Huang MH
    Chem Asian J; 2019 Jul; 14(13):2316-2321. PubMed ID: 31120175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Negative-differential band-gap renormalization in type-II GaAs/AlAs superlattices.
    Langbein W; Hallstein S; Kalt H; Nötzel R; Ploog K
    Phys Rev B Condens Matter; 1995 Jan; 51(3):1946-1949. PubMed ID: 9978923
    [No Abstract]   [Full Text] [Related]  

  • 25. Electronic structure of (GaAs)m(AlAs)n superlattices grown in the.
    Ikonic Z; Srivastava GP; Inkson JC
    Phys Rev B Condens Matter; 1995 Sep; 52(11):7830-7833. PubMed ID: 9979765
    [No Abstract]   [Full Text] [Related]  

  • 26. Theoretical study of nitride short period superlattices.
    Gorczyca I; Suski T; Christensen NE; Svane A
    J Phys Condens Matter; 2018 Feb; 30(6):063001. PubMed ID: 29256446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-period GaAs-AlAs superlattices: Optical properties and electronic structure.
    Moore KJ; Duggan G; Dawson P; Foxon CT
    Phys Rev B Condens Matter; 1988 Sep; 38(8):5535-5542. PubMed ID: 9946993
    [No Abstract]   [Full Text] [Related]  

  • 28. Band offset in semiconductor heterojunctions.
    Di Liberto G; Pacchioni G
    J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34284370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic structure investigation of wide band gap semiconductors-Mg
    Al Fattah MF; Amin MR; Mallmann M; Kasap S; Schnick W; Moewes A
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32364135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conduction-band minimum of (GaAs)1/(AlAs)1 superlattices: Relationship to X minimum of AlAs.
    Ge W; Schmidt WD; Sturge MD; Pfeiffer LN; West KW
    Phys Rev B Condens Matter; 1991 Aug; 44(7):3432-3435. PubMed ID: 9999961
    [No Abstract]   [Full Text] [Related]  

  • 31. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.
    Ma X; Li D; Zhao S; Li G; Yang K
    Nanoscale Res Lett; 2014; 9(1):580. PubMed ID: 25337061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum confinement in group III-V semiconductor 2D nanostructures.
    Cipriano LA; Di Liberto G; Tosoni S; Pacchioni G
    Nanoscale; 2020 Sep; 12(33):17494-17501. PubMed ID: 32808618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystallographic input data for (001)-, (110)- and (111)-oriented superlattices.
    Touaa Z; Sekkal N
    Acta Crystallogr B; 2012 Aug; 68(Pt 4):378-88. PubMed ID: 22810907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic structures and optical properties of short-period GaAs/AlAs superlattices.
    Xia JB; Chang YC
    Phys Rev B Condens Matter; 1990 Jul; 42(3):1781-1790. PubMed ID: 9995611
    [No Abstract]   [Full Text] [Related]  

  • 35. Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire.
    Jadczak J; Plochocka P; Mitioglu A; Breslavetz I; Royo M; Bertoni A; Goldoni G; Smolenski T; Kossacki P; Kretinin A; Shtrikman H; Maude DK
    Nano Lett; 2014 May; 14(5):2807-14. PubMed ID: 24745828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct and indirect transition in (GaAs)n/(AlAs)n superlattices with n=1-15.
    Fujimoto H; Hamaguchi C; Nakazawa T; Taniguchi K; Imanishi K; Kato H; Watanabe Y
    Phys Rev B Condens Matter; 1990 Apr; 41(11):7593-7601. PubMed ID: 9993053
    [No Abstract]   [Full Text] [Related]  

  • 37. Stability and electronic structure of ultrathin-layer superlattices: (GaAs)n/(AlAs)n.
    Oshiyama A; Saito M
    Phys Rev B Condens Matter; 1987 Oct; 36(11):6156-6159. PubMed ID: 9942304
    [No Abstract]   [Full Text] [Related]  

  • 38. First-principles analysis for the modulation of energy band gap and optical characteristics in HgTe/CdTe superlattices.
    Laref A; Alsagri M; Alahmed ZA; Laref S
    RSC Adv; 2019 May; 9(29):16390-16405. PubMed ID: 35516368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Band Gap AlGaAs Wurtzite Nanowires.
    Barettin D; Shtrom IV; Reznik RR; Mikushev SV; Cirlin GE; Auf der Maur M; Akopian N
    Nano Lett; 2023 Feb; 23(3):895-901. PubMed ID: 36649590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: suitability for low-power fin field-effect transistors.
    Hudait MK; Clavel M; Goley P; Jain N; Zhu Y
    Sci Rep; 2014 Nov; 4():6964. PubMed ID: 25376723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.