These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30201976)

  • 41. Different interactions between the two sides of purple membrane with atomic force microscope tip.
    Zhong S; Li H; Chen XY; Cao EH; Jin G; Hu KS
    Langmuir; 2007 Apr; 23(8):4486-93. PubMed ID: 17358085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Split-Intein-Based Method for the Efficient Production of Circularized Nanodiscs for Structural Studies of Membrane Proteins.
    Miehling J; Goricanec D; Hagn F
    Chembiochem; 2018 Sep; 19(18):1927-1933. PubMed ID: 29947468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycolipid biotinylation on purple membrane with maintained bioactivity.
    Xiang Y; Yang M; Su T; Chen Y; Bi L; Hu K
    J Phys Chem B; 2009 Jun; 113(22):7762-6. PubMed ID: 19438182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy.
    Schranz M; Baumann RP; Rhinow D; Hampp N
    J Phys Chem B; 2010 Jul; 114(27):9047-53. PubMed ID: 20509702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoscale electrical conductivity of the purple membrane monolayer.
    Casuso I; Fumagalli L; Samitier J; Padrós E; Reggiani L; Akimov V; Gomila G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041919. PubMed ID: 17995038
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalently circularized nanodiscs; challenges and applications.
    Nasr ML; Wagner G
    Curr Opin Struct Biol; 2018 Aug; 51():129-134. PubMed ID: 29677570
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Combined effect of the head groups and alkyl chains of archaea lipids when interacting with bacteriorhodopsin.
    Umegawa Y; Kawatake S; Murata M; Matsuoka S
    Biophys Chem; 2023 Mar; 294():106959. PubMed ID: 36709544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic force microscopy of native purple membrane.
    Müller DJ; Heymann JB; Oesterhelt F; Möller C; Gaub H; Büldt G; Engel A
    Biochim Biophys Acta; 2000 Aug; 1460(1):27-38. PubMed ID: 10984588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.
    Jin Y; Friedman N; Sheves M; He T; Cahen D
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8601-6. PubMed ID: 16731629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stability of purple membranes from Halobacterium salinarum toward surfactants: inkjet printing of a retinal protein.
    Imhof M; Pudewills J; Rhinow D; Chizhik I; Hampp N
    J Phys Chem B; 2012 Aug; 116(32):9727-31. PubMed ID: 22834540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel three-dimensional crystal of bacteriorhodopsin obtained by successive fusion of the vesicular assemblies.
    Takeda K; Sato H; Hino T; Kono M; Fukuda K; Sakurai I; Okada T; Kouyama T
    J Mol Biol; 1998 Oct; 283(2):463-74. PubMed ID: 9769218
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Native MS Analysis of Bacteriorhodopsin and an Empty Nanodisc by Orthogonal Acceleration Time-of-Flight, Orbitrap and Ion Cyclotron Resonance.
    Campuzano ID; Li H; Bagal D; Lippens JL; Svitel J; Kurzeja RJ; Xu H; Schnier PD; Loo JA
    Anal Chem; 2016 Dec; 88(24):12427-12436. PubMed ID: 28193065
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrostatic and steric interactions determine bacteriorhodopsin single-molecule biomechanics.
    Voïtchovsky K; Contera SA; Ryan JF
    Biophys J; 2007 Sep; 93(6):2024-37. PubMed ID: 17513362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots.
    Rakovich A; Sukhanova A; Bouchonville N; Lukashev E; Oleinikov V; Artemyev M; Lesnyak V; Gaponik N; Molinari M; Troyon M; Rakovich YP; Donegan JF; Nabiev I
    Nano Lett; 2010 Jul; 10(7):2640-8. PubMed ID: 20521831
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin.
    Joshi MK; Dracheva S; Mukhopadhyay AK; Bose S; Hendler RW
    Biochemistry; 1998 Oct; 37(41):14463-70. PubMed ID: 9772173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. N-like intermediate in the photocycle of the acid purple form of bacteriorhodopsin.
    Tokaji Z; Dér A; Keszthelyi L
    FEBS Lett; 1997 Mar; 405(1):125-7. PubMed ID: 9094439
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uniaxial Symmetry Breaking in Bacteriorhodopsin at the Thermal Phase Transition of Lipids of Purple Membranes.
    Mostafa HIA
    J Phys Chem B; 2024 Jun; 128(22):5397-5406. PubMed ID: 38776161
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chapter 11 - Reconstitution of membrane proteins in phospholipid bilayer nanodiscs.
    Ritchie TK; Grinkova YV; Bayburt TH; Denisov IG; Zolnerciks JK; Atkins WM; Sligar SG
    Methods Enzymol; 2009; 464():211-31. PubMed ID: 19903557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.