BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 30202042)

  • 21. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive tuning of bioadhesive properties of polydimethylsiloxane (PDMS) membranes with controlled porosity.
    Jang Y; Lee M; Kim H; Cha C; Jung J; Oh J
    Biofabrication; 2019 May; 11(3):035021. PubMed ID: 31035262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.
    Aran K; Sasso LA; Kamdar N; Zahn JD
    Lab Chip; 2010 Mar; 10(5):548-52. PubMed ID: 20162227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.
    Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic chips controlled with elastomeric microvalve arrays.
    Li N; Sip C; Folch A
    J Vis Exp; 2007; (8):296. PubMed ID: 18989408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.
    Pham P; Vo T; Luo X
    Lab Chip; 2017 Jan; 17(2):248-255. PubMed ID: 27942655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices.
    Esch MB; Sung JH; Yang J; Yu C; Yu J; March JC; Shuler ML
    Biomed Microdevices; 2012 Oct; 14(5):895-906. PubMed ID: 22847474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate.
    Ishibashi T; Hoshino Y; Kaji H; Kanzaki M; Sato M; Nishizawa M
    Biomed Microdevices; 2009 Apr; 11(2):413-9. PubMed ID: 18975093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust chemical bonding of PMMA microfluidic devices to porous PETE membranes for reliable cytotoxicity testing of drugs.
    Nguyen T; Jung SH; Lee MS; Park TE; Ahn SK; Kang JH
    Lab Chip; 2019 Nov; 19(21):3706-3713. PubMed ID: 31577312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture.
    Moghadas H; Saidi MS; Kashaninejad N; Kiyoumarsioskouei A; Nguyen NT
    Biomed Microdevices; 2017 Aug; 19(4):74. PubMed ID: 28831626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Micropatterned porous membranes for combinatorial cell-based assays.
    Vulin C; Evenou F; Di Meglio JM; Hersen P
    Methods Cell Biol; 2014; 121():155-69. PubMed ID: 24560509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micro-macro hybrid soft-lithography master (MMHSM) fabrication for lab-on-a-chip applications.
    Park J; Li J; Han A
    Biomed Microdevices; 2010 Apr; 12(2):345-51. PubMed ID: 20049640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generating Multicompartmental 3D Biological Constructs Interfaced through Sequential Injections in Microfluidic Devices.
    Ugolini GS; Visone R; Redaelli A; Moretti M; Rasponi M
    Adv Healthc Mater; 2017 May; 6(10):. PubMed ID: 28267277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Practical fabrication of microfluidic platforms for live-cell microscopy.
    Lorusso D; Nikolov HN; Milner JS; Ochotny NM; Sims SM; Dixon SJ; Holdsworth DW
    Biomed Microdevices; 2016 Oct; 18(5):78. PubMed ID: 27523472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Review of Organ-on-a-Chip Technology and Its Applications.
    Farhang Doost N; Srivastava SK
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of a Three-Layer PDMS Pneumatic Microfluidic Chip for Micro Liquid Sample Operation.
    Liu X; Li S
    SLAS Technol; 2020 Apr; 25(2):151-161. PubMed ID: 31425005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.
    Gou HL; Xu JJ; Xia XH; Chen HY
    ACS Appl Mater Interfaces; 2010 May; 2(5):1324-30. PubMed ID: 20402458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.