These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30202042)

  • 41. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.
    Gou HL; Xu JJ; Xia XH; Chen HY
    ACS Appl Mater Interfaces; 2010 May; 2(5):1324-30. PubMed ID: 20402458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of silicon membranes for extracorporeal membrane oxygenation (ECMO).
    Abada EN; Feinberg BJ; Roy S
    Biomed Microdevices; 2018 Oct; 20(4):86. PubMed ID: 30291524
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique.
    Carugo D; Lee JY; Pora A; Browning RJ; Capretto L; Nastruzzi C; Stride E
    Biomed Microdevices; 2016 Feb; 18(1):4. PubMed ID: 26747434
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.
    Beardslee LA; Stolwijk J; Khaladj DA; Trebak M; Halman J; Torrejon KY; Niamsiri N; Bergkvist M
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1192-201. PubMed ID: 26079689
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfabricated free standing, tuneable, porous microfilters from an epoxy based photoresist for effective bioseparation.
    Sengupta S; Shyamala D; Kannan S; Fidal Kumar VT; Bhattacharya E
    Biointerphases; 2024 Jan; 19(1):. PubMed ID: 38407470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions.
    Sabaté Del Río J; Ro J; Yoon H; Park TE; Cho YK
    Biosens Bioelectron; 2023 Mar; 224():115057. PubMed ID: 36640548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface Characteristics and Bone Biocompatibility of Cold-Sprayed Porous Titanium on Polydimethylsiloxane Substrates.
    Liao TY; King PC; Zhu D; Crawford RJ; Ivanova EP; Thissen H; Kingshott P
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1402-1421. PubMed ID: 36813258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elastomeric free-form blood vessels for interconnecting organs on chip systems.
    Zhang W; Zhang YS; Bakht SM; Aleman J; Shin SR; Yue K; Sica M; Ribas J; Duchamp M; Ju J; Sadeghian RB; Kim D; Dokmeci MR; Atala A; Khademhosseini A
    Lab Chip; 2016 Apr; 16(9):1579-86. PubMed ID: 26999423
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and characterization of a PDMS-based masking method for microfabricated Oral drug delivery devices.
    Kamguyan K; Thamdrup LHE; Vaut L; Nielsen LH; Zor K; Boisen A
    Biomed Microdevices; 2020 May; 22(2):35. PubMed ID: 32419094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum.
    Ju JI; Ko JM; Kim SH; Baek JY; Cha HC; Lee SH
    Bioprocess Biosyst Eng; 2006 Aug; 29(3):163-8. PubMed ID: 16802121
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing.
    Park SG; Lee SK; Moon JH; Yang SM
    Lab Chip; 2009 Nov; 9(21):3144-50. PubMed ID: 19823731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Embryonic body culturing in an all-glass microfluidic device with laser-processed 4 μm thick ultra-thin glass sheet filter.
    Yalikun Y; Tanaka N; Hosokawa Y; Iino T; Tanaka Y
    Biomed Microdevices; 2017 Sep; 19(4):85. PubMed ID: 28929304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.