BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30202100)

  • 1. Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer.
    Eckhardt AK; Linden MM; Wende RC; Bernhardt B; Schreiner PR
    Nat Chem; 2018 Nov; 10(11):1141-1147. PubMed ID: 30202100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragmentation of deprotonated glycolaldehyde in the gas phase and relevance to the formose reaction.
    Sekiguchi O; Uggerud E
    J Phys Chem A; 2013 Nov; 117(44):11293-6. PubMed ID: 24102334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar synthesis from a gas-phase formose reaction.
    Jalbout AF; Abrell L; Adamowicz L; Polt R; Apponi AJ; Ziurys LM
    Astrobiology; 2007 Jun; 7(3):433-42. PubMed ID: 17630839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic Synthesis of Glycolaldehyde and Glyceraldehyde from Formaldehyde: A Computational Study on the Initial Steps of the Formose Reaction.
    Venturini A; González J
    Chempluschem; 2024 Mar; 89(3):e202300388. PubMed ID: 37932034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Glycolaldehyde Enol (HOHC═CHOH) in Interstellar Analogue Ices.
    Kleimeier NF; Eckhardt AK; Kaiser RI
    J Am Chem Soc; 2021 Sep; 143(34):14009-14018. PubMed ID: 34407613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radical routes to interstellar glycolaldehyde. The possibility of stereoselectivity in gas-phase polymerization reactions involving CH(2)O and ˙CH(2)OH.
    Wang T; Bowie JH
    Org Biomol Chem; 2010 Oct; 8(20):4757-66. PubMed ID: 20714667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and mechanisms for the unimolecular dissociation of protonated trioses and relationship to proton-mediated formaldehyde polymerization to carbohydrates in interstellar environments.
    Simakov A; Sekiguchi O; Bunkan AJ; Uggerud E
    J Am Chem Soc; 2011 Dec; 133(51):20816-22. PubMed ID: 22070639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Observation of Gas-Phase Hydroxymethylene: Photoionization and Kinetics Resulting from Methanol Photodissociation.
    Hockey EK; McLane N; Martí C; Duckett L; Osborn DL; Dodson LG
    J Am Chem Soc; 2024 May; 146(21):14416-14421. PubMed ID: 38744681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates.
    Lambert JB; Gurusamy-Thangavelu SA; Ma K
    Science; 2010 Feb; 327(5968):984-6. PubMed ID: 20167782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prebiotic Sugar Formation Under Nonaqueous Conditions and Mechanochemical Acceleration.
    Lamour S; Pallmann S; Haas M; Trapp O
    Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31226799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for tunneling in base-catalyzed isomerization of glyceraldehyde to dihydroxyacetone by hydride shift under formose conditions.
    Cheng L; Doubleday C; Breslow R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4218-20. PubMed ID: 25831511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Ion- and Hydrogen-Bond-Mediated Interstellar Prebiotic Chemistry: The First Step in the Formose Reaction.
    Thripati S; Ramabhadran RO
    J Phys Chem A; 2017 Nov; 121(45):8659-8674. PubMed ID: 29058895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared spectroscopy and theory of the formaldehyde cation and its hydroxymethylene isomer.
    Mauney DT; Mosley JD; Madison LR; McCoy AB; Duncan MA
    J Chem Phys; 2016 Nov; 145(17):174303. PubMed ID: 27825210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autocatalysis in Formose Reaction and Formation of RNA Nucleosides.
    Jeilani YA; Nguyen MT
    J Phys Chem B; 2020 Dec; 124(50):11324-11336. PubMed ID: 33269920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia.
    Weber AL
    Orig Life Evol Biosph; 1998 Jun; 28(3):259-70. PubMed ID: 9611766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of formose sugar and formaldehyde by high-performance liquid chromatography.
    Iqbal MZ; Novalin S
    J Chromatogr A; 2009 Jun; 1216(26):5116-21. PubMed ID: 19446299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,3-Dioxolane-4-ol Hemiacetal Stores Formaldehyde and Glycolaldehyde in the Gas-Phase.
    Eckhardt AK; Wende RC; Schreiner PR
    J Am Chem Soc; 2018 Oct; 140(39):12333-12336. PubMed ID: 30187747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase identification of (
    Melosso M; Bizzocchi L; Gazzeh H; Tonolo F; Guillemin JC; Alessandrini S; Rivilla VM; Dore L; Barone V; Puzzarini C
    Chem Commun (Camb); 2022 Feb; 58(16):2750-2753. PubMed ID: 35119446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting.
    Haas M; Lamour S; Christ SB; Trapp O
    Commun Chem; 2020 Oct; 3(1):140. PubMed ID: 36703456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an autocatalytic reaction cycle in neutral medium for synthesis of life-sustaining sugars.
    Tabata H; Chikatani G; Nishijima H; Harada T; Miyake R; Kato S; Igarashi K; Mukouyama Y; Shirai S; Waki M; Hase Y; Nakanishi S
    Chem Sci; 2023 Nov; 14(46):13475-13484. PubMed ID: 38033894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.