BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3020219)

  • 1. Calcium absorption during development: experimental studies of the rat small intestine.
    Toverud SU; Dostal LA
    J Pediatr Gastroenterol Nutr; 1986; 5(5):688-95. PubMed ID: 3020219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective biological response by target organs (intestine, kidney, and bone) to 1,25-dihydroxyvitamin D3 and two analogues.
    Norman AW; Sergeev IN; Bishop JE; Okamura WH
    Cancer Res; 1993 Sep; 53(17):3935-42. PubMed ID: 8395333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D-dependent calcium transport.
    DeLuca HF
    Soc Gen Physiol Ser; 1985; 39():159-76. PubMed ID: 2984778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis.
    Brandi L
    Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D-dependent calcium-binding protein. Changes during gestation, prenatal and postnatal development in rats.
    Delorme AC; Marche P; Garel JM
    J Dev Physiol; 1979 Jun; 1(3):181-94. PubMed ID: 551109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent studies on the biological actions of vitamin D on intestinal transport and the electrophysiology of peripheral nerve and cardiac muscle.
    Wasserman RH; Brindak ME; Buddle MM; Cai Q; Davis FC; Fullmer CS; Gilmour RF; Hu C; Mykkanen HM; Tapper DN
    Prog Clin Biol Res; 1990; 332():99-126. PubMed ID: 2184443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of growth and maturation on membrane-initiated actions of 1,25-dihydroxyvitamin D3-II: calcium transport, receptor kinetics, and signal transduction in intestine of female chickens.
    Larsson B; Nemere I
    J Cell Biochem; 2003 Dec; 90(5):901-13. PubMed ID: 14624450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium and sodium transport and vitamin D metabolism in the spontaneously hypertensive rat.
    Schedl HP; Miller DL; Pape JM; Horst RL; Wilson HD
    J Clin Invest; 1984 Apr; 73(4):980-6. PubMed ID: 6707214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of intestinal calcium absorption.
    Bronner F
    J Cell Biochem; 2003 Feb; 88(2):387-93. PubMed ID: 12520541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic acidosis enhances 1,25(OH)2D3-induced intestinal absorption of calcium and phosphorus in rats.
    Gafter U; Edelstein S; Hirsh J; Levi J
    Miner Electrolyte Metab; 1986; 12(4):213-7. PubMed ID: 3762507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of bile on intestinal calcium and vitamin D absorption. Animal experiment studies in swine].
    Braun F
    Wien Klin Wochenschr Suppl; 1986; 166():1-23. PubMed ID: 3008448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and transport effects of 1,25-dihydroxyvitamin D3 in rat duodenum.
    Bronner F; Lipton J; Pansu D; Buckley M; Singh R; Miller A
    Fed Proc; 1982 Jan; 41(1):61-5. PubMed ID: 6895734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of vitamin D3 on duodenal calcium absorption in vivo during early development.
    Dostal LA; Toverud SU
    Am J Physiol; 1984 May; 246(5 Pt 1):G528-34. PubMed ID: 6547027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1,25(OH)2D3-dependent regulation of calbindin-D28k mRNA requires ongoing protein synthesis in chick duodenal organ culture.
    Meyer J; Galligan MA; Jones G; Komm BS; Haussler CA; Haussler MR
    J Cell Biochem; 1995 Jul; 58(3):315-27. PubMed ID: 7593254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal vitamin D metabolism, intestinal calcium transport, and bone calcium status in the spontaneously hypertensive rat compared with its genetic control.
    Lucas PA; Brown RC; Drüeke T; Lacour B; Metz JA; McCarron DA
    J Clin Invest; 1986 Jul; 78(1):221-7. PubMed ID: 3755141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal calcium-binding protein (CaBP) and bone calcium mobilization in response to 1,24(R),25-(OH)3D3. Comparative effects of 1,25-(OH)2D3 and 24(R),25-(OH)2D3 in rats.
    Thomasset M; Cuisinier-Gleizes P; Mathieu H; DeLuca HF
    Mol Pharmacol; 1980 May; 17(3):362-6. PubMed ID: 6967147
    [No Abstract]   [Full Text] [Related]  

  • 17. Absence of calcitriol-mediated nongenomic actions in isolated intestinal cells of the damara mole-rat (Cryptomys damarensis).
    Buffenstein R; Sergeev IN; Pettifor JM
    Gen Comp Endocrinol; 1994 Jul; 95(1):25-30. PubMed ID: 7926652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparative study of the effect of 1,25 dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on calcium homeostasis and bone tissue state in rats during hypokinesia].
    Sergeev IN; Blazheevich NV; Kaplanskiĭ AS; Shvets VN; Belakovskiĭ MS
    Vopr Med Khim; 1987; 33(1):100-7. PubMed ID: 3495067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent loop small intestinal vitamin D receptor concentration and bone mineral density after Billroth II (Polya) gastrectomy in humans.
    Pazianas M; Zaidi M; Subhani JM; Finch PJ; Ang L; Maxwell JD
    Calcif Tissue Int; 2003 Apr; 72(4):485-90. PubMed ID: 12574872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.