BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3020225)

  • 21. Spin-label studies of the lipid and protein components of erythrocyte membranes. A comparison of electron paramagnetic resonance and saturation transfer electron paramagnetic resonance methods.
    Fung LW
    Biophys J; 1981 Feb; 33(2):253-62. PubMed ID: 6261849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biophysical studies of erythrocyte membranes from patients with duchenne muscular dystrophy.
    Dellantonio R; Angeleri F; Capriotti M; Lenaz G; Curatola G; Mazzanti L; Bertoli E
    Ital J Biochem; 1980; 29(2):121-8. PubMed ID: 6250994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A dynamical study on the interactions between the cytoskeleton components in the human erythrocyte as detected by saturation transfer electron paramagnetic resonance of spin-labeled spectrin, ankyrin, and protein 4.1.
    Dubreuil YL; Cassoly R
    Arch Biochem Biophys; 1983 Jun; 223(2):495-502. PubMed ID: 6305282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spin-label detection of hemoglobin-membrane interaction at physiological pH.
    Fung LW
    Biochemistry; 1981 Dec; 20(25):7162-6. PubMed ID: 6274390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Structural reorganizations of the lipids and proteins of erythrocyte membranes under the action of low temperatures].
    Gulevskiĭ AK; Riazantsev VV; Belous AM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1990; (5):29-36. PubMed ID: 2168217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid mobility and order in bovine rod outer segment disk membranes. A spin-label study of lipid-protein interactions.
    Pates RD; Marsh D
    Biochemistry; 1987 Jan; 26(1):29-39. PubMed ID: 3030400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spin-labeling studies of the conformation of the Ca(2+)-regulatory protein calmodulin in solution and bound to the membrane skeleton in erythrocyte ghosts: implications to transmembrane signaling.
    Yacko MA; Butterfield DA
    Biophys J; 1992 Aug; 63(2):317-22. PubMed ID: 1330029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ionic strength-dependent alterations of membrane structure of red blood cells.
    Herrmann A; Müller P
    Biosci Rep; 1986 Nov; 6(11):1007-15. PubMed ID: 3034349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH
    Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aging of the erythrocyte. IV. Spin-label studies of membrane lipids, proteins and permeability.
    Bartosz G
    Biochim Biophys Acta; 1981 Jun; 644(1):69-73. PubMed ID: 6266465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of hemoglobin with the red blood cell membrane. A saturation transfer electron paramagnetic resonance study.
    Cassoly R
    Biochim Biophys Acta; 1982 Jul; 689(2):203-9. PubMed ID: 6288095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and motional changes in glyceraldehyde-3-phosphate dehydrogenase upon binding to the band-3 protein of the erythrocyte membrane examined with [15N,2H]maleimide spin label and electron paramagnetic resonance.
    Beth AH; Balasubramanian K; Wilder RT; Venkataramu SD; Robinson BH; Dalton LR; Pearson DE; Park JH
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4955-9. PubMed ID: 6272285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erythrocyte spectrin maintains its segmental motions on oxidation: a spin-label EPR study.
    Fung LW; Kalaw BO; Hatfield RM; Dias MN
    Biophys J; 1996 Feb; 70(2):841-51. PubMed ID: 8789101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ESR spectral changes induced by chlorpromazine in spin-labeled erythrocyte ghost membranes.
    Yamaguchi T; Watanabe S; Kimoto E
    Biochim Biophys Acta; 1985 Nov; 820(2):157-64. PubMed ID: 2996599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.
    Páli T; Kóta Z
    Methods Mol Biol; 2013; 974():297-328. PubMed ID: 23404282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of 2,2,6,6-tetramethyl-4-maleimido-piperidin-1-oxyl in electron paramagnetic resonance spin label studies of drug interactions with erythrocyte membranes.
    Hornblow HM; Laverty R; Logan BJ; Peake BM
    J Pharmacol Methods; 1985 Nov; 14(3):229-41. PubMed ID: 2997549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gas chromatographic analysis of cetiedil, a candidate antisickling agent, in human plasma with nitrogen-sensitive detection.
    Henderson JD; Mankad VN; Glenn TM; Cho YW
    J Pharm Sci; 1984 Dec; 73(12):1748-51. PubMed ID: 6527249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The synthesis and some pharmacological actions of the enantiomers of the K(+)-channel blocker cetiedil.
    Roxburgh CJ; Ganellin CR; Shiner MA; Benton DC; Dunn PM; Ayalew Y; Jenkinson DH
    J Pharm Pharmacol; 1996 Aug; 48(8):851-7. PubMed ID: 8887737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins.
    Sakaki T; Tsuji A; Chang CH; Ohnishi S
    Biochemistry; 1982 May; 21(10):2366-72. PubMed ID: 6284198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single-dose pharmacokinetic study of the antisickling agent cetiedil.
    Orringer EP; Powell JR; Cross RE; Rogers JF; Wojcieszyn O; Phillips JC; Reed J; Ng KT; Berkowitz LR
    Clin Pharmacol Ther; 1986 Mar; 39(3):276-81. PubMed ID: 3512147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.