These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30202689)

  • 21. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unidirectional Enhanced Dipolar Emission with an Individual Dielectric Nanoantenna.
    Zhang T; Xu J; Deng ZL; Hu D; Qin F; Li X
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 31003409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
    Grefe SE; Leiva D; Mastel S; Dhuey SD; Cabrini S; Schuck PJ; Abate Y
    Phys Chem Chem Phys; 2013 Nov; 15(43):18944-50. PubMed ID: 24097054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas.
    Alonso-González P; Albella P; Golmar F; Arzubiaga L; Casanova F; Hueso LE; Aizpurua J; Hillenbrand R
    Opt Express; 2013 Jan; 21(1):1270-80. PubMed ID: 23389020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas.
    Shi X; Coca-López N; Janik J; Hartschuh A
    Chem Rev; 2017 Apr; 117(7):4945-4960. PubMed ID: 28212025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-high sensitivity sensing based on ultraviolet plasmonic enhancements in semiconductor triangular prism meta-antenna systems.
    He Z; Li Z; Li C; Xue W; Cui W
    Opt Express; 2020 Jun; 28(12):17595-17610. PubMed ID: 32679965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometry-induced enhancement factor improvement in covered-gold-nanorod-dimer antennas.
    Ramos IA; León Hilario LM; Pedano ML; Reynoso AA
    RSC Adv; 2021 Mar; 11(16):9518-9527. PubMed ID: 35423468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gold Nanorod DNA Origami Antennas for 3 Orders of Magnitude Fluorescence Enhancement in NIR.
    Trofymchuk K; Kołątaj K; Glembockyte V; Zhu F; Acuna GP; Liedl T; Tinnefeld P
    ACS Nano; 2023 Jan; ():. PubMed ID: 36594816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colloidal quantum dots as probes of excitation field enhancement in photonic antennas.
    Aouani H; Itzhakov S; Gachet D; Devaux E; Ebbesen TW; Rigneault H; Oron D; Wenger J
    ACS Nano; 2010 Aug; 4(8):4571-8. PubMed ID: 20731440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spectral shift between near- and far-field resonances of optical nano-antennas.
    Menzel C; Hebestreit E; Mühlig S; Rockstuhl C; Burger S; Lederer F; Pertsch T
    Opt Express; 2014 Apr; 22(8):9971-82. PubMed ID: 24787879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generating Ultrabroadband Deep-UV Radiation and Sub-10 nm Gap by Hybrid-Morphology Gold Antennas.
    Shi L; Andrade JRC; Tajalli A; Geng J; Yi J; Heidenblut T; Segerink FB; Babushkin I; Kholodtsova M; Merdji H; Bastiaens B; Morgner U; Kovacev M
    Nano Lett; 2019 Jul; 19(7):4779-4786. PubMed ID: 31244236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexistence of Scattering Enhancement and Suppression by Plasmonic Cavity Modes in Loaded Dimer Gap-Antennas.
    Zhang Q; Xiao JJ; Li M; Han D; Gao L
    Sci Rep; 2015 Nov; 5():17234. PubMed ID: 26611726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules.
    Regmi R; Berthelot J; Winkler PM; Mivelle M; Proust J; Bedu F; Ozerov I; Begou T; Lumeau J; Rigneault H; García-Parajó MF; Bidault S; Wenger J; Bonod N
    Nano Lett; 2016 Aug; 16(8):5143-51. PubMed ID: 27399057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonant Optical Antennas with Atomic-Sized Tips and Tunable Gaps Achieved by Mechanical Actuation and Electrical Control.
    Gruber CM; Herrmann L; Bellido EP; Dössegger J; Olziersky A; Drechsler U; Puebla-Hellmann G; Botton GA; Novotny L; Lörtscher E
    Nano Lett; 2020 Jun; 20(6):4346-4353. PubMed ID: 32369701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Boosting infrared energy transfer in 3D nanoporous gold antennas.
    Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F
    Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical rectification and field enhancement in a plasmonic nanogap.
    Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D
    Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemically Programmable Plasmonic Antennas.
    Dong S; Zhang K; Yu Z; Fan JA
    ACS Nano; 2016 Jul; 10(7):6716-24. PubMed ID: 27328022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.