These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30203001)

  • 1. ℓ 1-Penalized censored Gaussian graphical model.
    Augugliaro L; Abbruzzo A; Vinciotti V
    Biostatistics; 2020 Apr; 21(2):e1-e16. PubMed ID: 30203001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored graphical lasso for data integration in gene network reconstruction.
    Lingjærde C; Lien TG; Borgan Ø; Bergholtz H; Glad IK
    BMC Bioinformatics; 2021 Oct; 22(1):498. PubMed ID: 34654363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs.
    Leng J; Wu LY
    Bioinformatics; 2022 Jan; 38(3):770-777. PubMed ID: 34718410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Gaussian graphical modeling via l1 penalization.
    Sun H; Li H
    Biometrics; 2012 Dec; 68(4):1197-206. PubMed ID: 23020775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer.
    Chiquet J; Rigaill G; Sundqvist M
    Methods Mol Biol; 2019; 1883():143-160. PubMed ID: 30547399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks.
    Wang T; Ren Z; Ding Y; Fang Z; Sun Z; MacDonald ML; Sweet RA; Wang J; Chen W
    PLoS Comput Biol; 2016 Feb; 12(2):e1004755. PubMed ID: 26872036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penalized estimation of the Gaussian graphical model from data with replicates.
    van Wieringen WN; Chen Y
    Stat Med; 2021 Aug; 40(19):4279-4293. PubMed ID: 33987868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating prior information into differential network analysis using non-paranormal graphical models.
    Zhang XF; Ou-Yang L; Yan H
    Bioinformatics; 2017 Aug; 33(16):2436-2445. PubMed ID: 28407042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient penalized estimation approach for semiparametric linear transformation models with interval-censored data.
    Lu M; Liu Y; Li CS; Sun J
    Stat Med; 2022 May; 41(10):1829-1845. PubMed ID: 35099078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lasso regularization for left-censored Gaussian outcome and high-dimensional predictors.
    Soret P; Avalos M; Wittkop L; Commenges D; Thiébaut R
    BMC Med Res Methodol; 2018 Dec; 18(1):159. PubMed ID: 30514234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.
    Werhli AV; Grzegorczyk M; Husmeier D
    Bioinformatics; 2006 Oct; 22(20):2523-31. PubMed ID: 16844710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive lasso for the Cox regression with interval censored and possibly left truncated data.
    Li C; Pak D; Todem D
    Stat Methods Med Res; 2020 Apr; 29(4):1243-1255. PubMed ID: 31203741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforced mixture learning.
    Le Y; Zhou F; Bai Y
    Neural Netw; 2023 Aug; 165():175-184. PubMed ID: 37307663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed Bayesian networks: a mixture of Gaussian distributions.
    Chevrolat JP; Rutigliano F; Golmard JL
    Methods Inf Med; 1994 Dec; 33(5):535-42. PubMed ID: 7869953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring gene networks from discrete expression data.
    Zhang L; Mallick BK
    Biostatistics; 2013 Sep; 14(4):708-22. PubMed ID: 23873894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SILGGM: An extensive R package for efficient statistical inference in large-scale gene networks.
    Zhang R; Ren Z; Chen W
    PLoS Comput Biol; 2018 Aug; 14(8):e1006369. PubMed ID: 30102702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact hypothesis testing for shrinkage-based Gaussian graphical models.
    Bernal V; Bischoff R; Guryev V; Grzegorczyk M; Horvatovich P
    Bioinformatics; 2019 Dec; 35(23):5011-5017. PubMed ID: 31077287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.