These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30203001)

  • 21. Data-Driven and Knowledge-Based Algorithms for Gene Network Reconstruction on High-Dimensional Data.
    Abbaszadeh O; Azarpeyvand A; Khanteymoori A; Bahari A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1545-1557. PubMed ID: 33119511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks.
    Seal S; Li Q; Basner EB; Saba LM; Kechris K
    PLoS Comput Biol; 2023 Jan; 19(1):e1010758. PubMed ID: 36607897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methods for a longitudinal quantitative outcome with a multivariate Gaussian distribution multi-dimensionally censored by therapeutic intervention.
    Sun W; Larsen MD; Lachin JM
    Stat Med; 2014 Apr; 33(8):1288-306. PubMed ID: 24258796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. JRmGRN: joint reconstruction of multiple gene regulatory networks with common hub genes using data from multiple tissues or conditions.
    Deng W; Zhang K; Liu S; Zhao PX; Xu S; Wei H
    Bioinformatics; 2018 Oct; 34(20):3470-3478. PubMed ID: 29718177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.
    Liu LZ; Wu FX; Zhang WJ
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S1. PubMed ID: 25350697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inferring Gene Co-Expression Networks by Incorporating Prior Protein-Protein Interaction Networks.
    Wang MG; Ou-Yang L; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2894-2906. PubMed ID: 34383650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The GR2D2 estimator for the precision matrices.
    Gan D; Yin G; Zhang YD
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36184191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Integrated Approach of Learning Genetic Networks From Genome-Wide Gene Expression Data Using Gaussian Graphical Model and Monte Carlo Method.
    Zhao H; Datta S; Duan ZH
    Bioinform Biol Insights; 2023; 17():11779322231152972. PubMed ID: 36865982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks.
    Vinciotti V; Augugliaro L; Abbruzzo A; Wit EC
    Stat Appl Genet Mol Biol; 2016 Jun; 15(3):193-212. PubMed ID: 27023322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation.
    Chen LS; Prentice RL; Wang P
    Biometrics; 2014 Jun; 70(2):312-22. PubMed ID: 24471933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm.
    Oh JH; Deasy JO
    BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S5. PubMed ID: 25077716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrative approach for inference of gene regulatory networks using lasso-based random featuring and application to psychiatric disorders.
    Kim D; Kang M; Biswas A; Liu C; Gao J
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):50. PubMed ID: 27510319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gaussian variational estimation for multidimensional item response theory.
    Cho AE; Wang C; Zhang X; Xu G
    Br J Math Stat Psychol; 2021 Jul; 74 Suppl 1():52-85. PubMed ID: 33064318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene network inference by fusing data from diverse distributions.
    Žitnik M; Zupan B
    Bioinformatics; 2015 Jun; 31(12):i230-9. PubMed ID: 26072487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Penalized estimation of semiparametric transformation models with interval-censored data and application to Alzheimer's disease.
    Li S; Wu Q; Sun J
    Stat Methods Med Res; 2020 Aug; 29(8):2151-2166. PubMed ID: 31718478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compositional data network analysis via lasso penalized D-trace loss.
    Yuan H; He S; Deng M
    Bioinformatics; 2019 Sep; 35(18):3404-3411. PubMed ID: 31220226
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Local Poisson Graphical Model for inferring networks from sequencing data.
    Allen GI; Liu Z
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):189-98. PubMed ID: 23955777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct interaction network and differential network inference from compositional data via lasso penalized D-trace loss.
    He S; Deng M
    PLoS One; 2019; 14(7):e0207731. PubMed ID: 31339885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying Gene Network Rewiring Using Robust Differential Graphical Model with Multivariate t-Distribution.
    Yuan R; Ou-Yang L; Hu X; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):712-718. PubMed ID: 30802872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.