These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30203060)

  • 1. Inflammasomes: An Emerging Mechanism Translating Environmental Toxicant Exposure Into Neuroinflammation in Parkinson's Disease.
    Anderson FL; Coffey MM; Berwin BL; Havrda MC
    Toxicol Sci; 2018 Nov; 166(1):3-15. PubMed ID: 30203060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of c-Abl Kinase in Microglial Activation of NLRP3 Inflammasome and Impairment in Autolysosomal System.
    Lawana V; Singh N; Sarkar S; Charli A; Jin H; Anantharam V; Kanthasamy AG; Kanthasamy A
    J Neuroimmune Pharmacol; 2017 Dec; 12(4):624-660. PubMed ID: 28466394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease-Toxicant Interactions in Parkinson's Disease Neuropathology.
    Kwakye GF; McMinimy RA; Aschner M
    Neurochem Res; 2017 Jun; 42(6):1772-1786. PubMed ID: 27613618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants.
    Moloudizargari M; Moradkhani F; Asghari N; Fallah M; Asghari MH; Moghadamnia AA; Abdollahi M
    Life Sci; 2019 Aug; 231():116585. PubMed ID: 31226415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental toxins and Parkinson's disease.
    Goldman SM
    Annu Rev Pharmacol Toxicol; 2014; 54():141-64. PubMed ID: 24050700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease.
    Zhou Y; Lu M; Du RH; Qiao C; Jiang CY; Zhang KZ; Ding JH; Hu G
    Mol Neurodegener; 2016 Apr; 11():28. PubMed ID: 27084336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.
    Al-Gubory KH
    Reprod Biomed Online; 2014 Jul; 29(1):17-31. PubMed ID: 24813750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotenone directly induces BV2 cell activation via the p38 MAPK pathway.
    Gao F; Chen D; Hu Q; Wang G
    PLoS One; 2013; 8(8):e72046. PubMed ID: 23977201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson's Diseases.
    Sarkar S
    Curr Environ Health Rep; 2021 Sep; 8(3):203-211. PubMed ID: 34043217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Nicotinamide Adenine Dinucleotide Phosphate Inhibits MPTP-Induced Neuroinflammation and Neurotoxicity.
    Zhou Y; Wu J; Sheng R; Li M; Wang Y; Han R; Han F; Chen Z; Qin ZH
    Neuroscience; 2018 Nov; 391():140-153. PubMed ID: 30195055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides.
    Dardiotis E; Xiromerisiou G; Hadjichristodoulou C; Tsatsakis AM; Wilks MF; Hadjigeorgiou GM
    Toxicology; 2013 May; 307():17-23. PubMed ID: 23295711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective strategies to prevent and treat Parkinson's disease based on its pathophysiological mechanism.
    Lee Y; Kim MS; Lee J
    Arch Pharm Res; 2017 Oct; 40(10):1117-1128. PubMed ID: 28952032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease.
    Wang S; Yuan YH; Chen NH; Wang HB
    Int Immunopharmacol; 2019 Feb; 67():458-464. PubMed ID: 30594776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ketone Body β-Hydroxybutyrate Does Not Inhibit Synuclein Mediated Inflammasome Activation in Microglia.
    Deora V; Albornoz EA; Zhu K; Woodruff TM; Gordon R
    J Neuroimmune Pharmacol; 2017 Dec; 12(4):568-574. PubMed ID: 28836226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin.
    Mao H; Fang X; Floyd KM; Polcz JE; Zhang P; Liu B
    Brain Res; 2007 Dec; 1186():267-74. PubMed ID: 17999924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alzheimer's Disease and Parkinson's Disease: A Nutritional Toxicology Perspective of the Impact of Oxidative Stress, Mitochondrial Dysfunction, Nutrigenomics and Environmental Chemicals.
    Agnihotri A; Aruoma OI
    J Am Coll Nutr; 2020 Jan; 39(1):16-27. PubMed ID: 31829802
    [No Abstract]   [Full Text] [Related]  

  • 18. Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review).
    Guo JD; Zhao X; Li Y; Li GR; Liu XL
    Int J Mol Med; 2018 Apr; 41(4):1817-1825. PubMed ID: 29393357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease.
    Gorelenkova Miller O; Behring JB; Siedlak SL; Jiang S; Matsui R; Bachschmid MM; Zhu X; Mieyal JJ
    Antioxid Redox Signal; 2016 Dec; 25(18):967-982. PubMed ID: 27224303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inflammasomes link vascular disease with neuroinflammation and brain disorders.
    Lénárt N; Brough D; Dénes Á
    J Cereb Blood Flow Metab; 2016 Oct; 36(10):1668-1685. PubMed ID: 27486046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.