BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30203289)

  • 1. Loss of odor-induced c-Fos expression of juxtaglomerular activity following maintenance of mice on fatty diets.
    Fardone E; Celen AB; Schreiter NA; Thiebaud N; Cooper ML; Fadool DA
    J Bioenerg Biomembr; 2019 Feb; 51(1):3-13. PubMed ID: 30203289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal Odor Exposure Increases the Strength of Interglomerular Lateral Inhibition onto Olfactory Bulb Tufted Cells.
    Geramita M; Urban NN
    J Neurosci; 2016 Dec; 36(49):12321-12327. PubMed ID: 27927952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of c-Fos mRNA and fos protein expression in olfactory bulbs from unilaterally odor-deprived adult mice.
    Jin BK; Franzen L; Baker H
    Int J Dev Neurosci; 1996 Nov; 14(7-8):971-82. PubMed ID: 9010739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consumption of dietary fat causes loss of olfactory sensory neurons and associated circuitry that is not mitigated by voluntary exercise in mice.
    Chelette BM; Loeven AM; Gatlin DN; Landi Conde DR; Huffstetler CM; Qi M; Fadool DA
    J Physiol; 2022 Mar; 600(6):1473-1495. PubMed ID: 34807463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus.
    Liu A; Savya S; Urban NN
    J Neurosci; 2016 Nov; 36(46):11646-11653. PubMed ID: 27852773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo bioelectronic nose using transgenic mice for specific odor detection.
    Gao K; Li S; Zhuang L; Qin Z; Zhang B; Huang L; Wang P
    Biosens Bioelectron; 2018 Apr; 102():150-156. PubMed ID: 29128717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interhemispheric asymmetry of c-Fos expression in glomeruli and the olfactory tubercle following repeated odor stimulation.
    Jae Y; Lee N; Moon DW; Koo J
    FEBS Open Bio; 2020 May; 10(5):912-926. PubMed ID: 32237058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odor memory stability after reinnervation of the olfactory bulb.
    Blanco-Hernández E; Valle-Leija P; Zomosa-Signoret V; Drucker-Colín R; Vidaltamayo R
    PLoS One; 2012; 7(10):e46338. PubMed ID: 23071557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.
    Monjaraz-Fuentes F; Millán-Adalco D; Palomero-Rivero M; Hudson R; Drucker-Colín R
    Brain Res; 2017 Sep; 1670():6-13. PubMed ID: 28583862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent sculpting of olfactory sensory neurons is attributed to sensory enrichment, odor deprivation, and aging.
    Cavallin MA; Powell K; Biju KC; Fadool DA
    Neurosci Lett; 2010 Oct; 483(2):90-5. PubMed ID: 20691762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb.
    Homma R; Kovalchuk Y; Konnerth A; Cohen LB; Garaschuk O
    Front Neural Circuits; 2013; 7():23. PubMed ID: 23459031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral Gene Therapeutic Rescue of an Olfactory Ciliopathy Restores Sensory Input, Axonal Pathfinding, and Odor-Guided Behavior.
    Green WW; Uytingco CR; Ukhanov K; Kolb Z; Moretta J; McIntyre JC; Martens JR
    J Neurosci; 2018 Aug; 38(34):7462-7475. PubMed ID: 30061191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic odor interactions in olfactory sensory neurons are widespread in freely breathing mice.
    Zak JD; Reddy G; Vergassola M; Murthy VN
    Nat Commun; 2020 Jul; 11(1):3350. PubMed ID: 32620767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noradrenergic plasticity of olfactory sensory neuron inputs to the main olfactory bulb.
    Eckmeier D; Shea SD
    J Neurosci; 2014 Nov; 34(46):15234-43. PubMed ID: 25392492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory-dependent asymmetry for a urine-responsive olfactory bulb glomerulus.
    Oliva AM; Jones KR; Restrepo D
    J Comp Neurol; 2008 Oct; 510(5):475-83. PubMed ID: 18671299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory marker protein (OMP) regulates formation and refinement of the olfactory glomerular map.
    Albeanu DF; Provost AC; Agarwal P; Soucy ER; Zak JD; Murthy VN
    Nat Commun; 2018 Nov; 9(1):5073. PubMed ID: 30498219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity.
    Tucker KR; Godbey SJ; Thiebaud N; Fadool DA
    Physiol Behav; 2012 Oct; 107(3):424-32. PubMed ID: 22995978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of glomerular targeting by olfactory sensory axons.
    Treloar HB; Feinstein P; Mombaerts P; Greer CA
    J Neurosci; 2002 Apr; 22(7):2469-77. PubMed ID: 11923411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grouping and representation of odorant receptors in domains of the olfactory bulb sensory map.
    Nagao H; Yamaguchi M; Takahash Y; Mori K
    Microsc Res Tech; 2002 Aug; 58(3):168-75. PubMed ID: 12203695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene switching and odor induced activity shape expression of the OR37 family of olfactory receptor genes.
    Bader A; Bautze V; Haid D; Breer H; Strotmann J
    Eur J Neurosci; 2010 Dec; 32(11):1813-24. PubMed ID: 21059112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.