These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30203396)

  • 41. Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
    Sieber SA; Niessen S; Hoover HS; Cravatt BF
    Nat Chem Biol; 2006 May; 2(5):274-81. PubMed ID: 16565715
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Activity-based protein profiling of infected plants.
    Kaschani F; Gu C; van der Hoorn RA
    Methods Mol Biol; 2012; 835():47-59. PubMed ID: 22183646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DIGE-ABPP by click chemistry: pairwise comparison of serine hydrolase activities from the apoplast of infected plants.
    Hong TN; van der Hoorn RA
    Methods Mol Biol; 2014; 1127():183-94. PubMed ID: 24643562
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomic profiling of host-biofilm interactions in an oral infection model resembling the periodontal pocket.
    Bao K; Belibasakis GN; Selevsek N; Grossmann J; Bostanci N
    Sci Rep; 2015 Nov; 5():15999. PubMed ID: 26525412
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemistry-based functional proteomics for drug target deconvolution.
    Wang K; Yang T; Wu Q; Zhao X; Nice EC; Huang C
    Expert Rev Proteomics; 2012 Jun; 9(3):293-310. PubMed ID: 22809208
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomics progresses in microbial physiology and clinical antimicrobial therapy.
    Chen B; Zhang D; Wang X; Ma W; Deng S; Zhang P; Zhu H; Xu N; Liang S
    Eur J Clin Microbiol Infect Dis; 2017 Mar; 36(3):403-413. PubMed ID: 27812806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host-Pathogen Settings.
    Pförtner H; Depke M; Surmann K; Schmidt F; Völker U
    Methods Mol Biol; 2018; 1841():207-228. PubMed ID: 30259489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nutrient Zinc at the Host-Pathogen Interface.
    Lonergan ZR; Skaar EP
    Trends Biochem Sci; 2019 Dec; 44(12):1041-1056. PubMed ID: 31326221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study.
    Simon GM; Cravatt BF
    J Biol Chem; 2010 Apr; 285(15):11051-5. PubMed ID: 20147750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteome Profiling by 2D-Liquid Chromatography Method for Wheat-Rust Interaction.
    Hasançebi S
    Methods Mol Biol; 2017; 1659():99-113. PubMed ID: 28856644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity-Based Protein Profiling-Enabling Multimodal Functional Studies of Microbial Communities.
    Whidbey C; Wright AT
    Curr Top Microbiol Immunol; 2019; 420():1-21. PubMed ID: 30406866
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Global Proteomics Revealed
    Kamaladevi A; Balamurugan K
    Front Cell Infect Microbiol; 2017; 7():393. PubMed ID: 28932706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Malaria proteomics: insights into the parasite-host interactions in the pathogenic space.
    Bautista JM; Marín-García P; Diez A; Azcárate IG; Puyet A
    J Proteomics; 2014 Jan; 97():107-25. PubMed ID: 24140976
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and characterization of modification enzymes by biochemical analysis of the proteome.
    Jackman JE; Kotelawala L; Grayhack EJ; Phizicky EM
    Methods Enzymol; 2007; 425():139-52. PubMed ID: 17673082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic Detection of Carbohydrate-Active Enzymes (CAZymes) in Microbial Secretomes.
    Tuveng TR; Eijsink VGH; Arntzen MØ
    Methods Mol Biol; 2019; 1871():159-177. PubMed ID: 30276740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. iTRAQ-based quantitative proteomic analysis of midgut in silkworm infected with Bombyx mori cytoplasmic polyhedrosis virus.
    Gao K; Deng XY; Shang MK; Qin GX; Hou CX; Guo XJ
    J Proteomics; 2017 Jan; 152():300-311. PubMed ID: 27908826
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advanced Activity-Based Protein Profiling Application Strategies for Drug Development.
    Wang S; Tian Y; Wang M; Wang M; Sun GB; Sun XB
    Front Pharmacol; 2018; 9():353. PubMed ID: 29686618
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomics approaches for the analysis of enriched microbial subpopulations and visualization of complex functional information.
    Bernhardt J; Michalik S; Wollscheid B; Völker U; Schmidt F
    Curr Opin Biotechnol; 2013 Feb; 24(1):112-9. PubMed ID: 23141770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proteomics of bacterial pathogenicity: therapeutic implications.
    Windle HJ; Brown PA; Kelleher DP
    Proteomics Clin Appl; 2010 Feb; 4(2):215-27. PubMed ID: 21137045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteomics characterization of tick-host-pathogen interactions.
    Popara M; Villar M; de la Fuente J
    Methods Mol Biol; 2015; 1247():513-27. PubMed ID: 25399117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.