BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 30203648)

  • 1. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape-Persistent Tetrahedral [4+6] Boronic Ester Cages with Different Degrees of Fluoride Substitution.
    Elbert SM; Regenauer NI; Schindler D; Zhang WS; Rominger F; Schröder RR; Mastalerz M
    Chemistry; 2018 Aug; 24(44):11438-11443. PubMed ID: 29897652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A permanent mesoporous organic cage with an exceptionally high surface area.
    Zhang G; Presly O; White F; Oppel IM; Mastalerz M
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1516-20. PubMed ID: 24403008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry.
    Lauer JC; Zhang WS; Rominger F; Schröder RR; Mastalerz M
    Chemistry; 2018 Feb; 24(8):1816-1820. PubMed ID: 29272048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties.
    Schneider MW; Oppel IM; Ott H; Lechner LG; Hauswald HJ; Stoll R; Mastalerz M
    Chemistry; 2012 Jan; 18(3):836-47. PubMed ID: 22170731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble Congeners of Prior Insoluble Shape-Persistent Imine Cages.
    Holsten M; Feierabend S; Elbert SM; Rominger F; Oeser T; Mastalerz M
    Chemistry; 2021 Jun; 27(36):9383-9390. PubMed ID: 33848032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly CO2-selective organic molecular cages: what determines the CO2 selectivity.
    Jin Y; Voss BA; Jin A; Long H; Noble RD; Zhang W
    J Am Chem Soc; 2011 May; 133(17):6650-8. PubMed ID: 21473590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computationally-inspired discovery of an unsymmetrical porous organic cage.
    Berardo E; Greenaway RL; Turcani L; Alston BM; Bennison MJ; Miklitz M; Clowes R; Briggs ME; Cooper AI; Jelfs KE
    Nanoscale; 2018 Dec; 10(47):22381-22388. PubMed ID: 30474677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of a [4+6] Salicylbisimine Cage to Chemically Robust Amide Cages.
    Bhat AS; Elbert SM; Zhang WS; Rominger F; Dieckmann M; Schröder RR; Mastalerz M
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8819-8823. PubMed ID: 30964597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a Large, Shape-Flexible, Solvatomorphic Porous Organic Cage.
    Teng B; Little MA; Hasell T; Chong SY; Jelfs KE; Clowes R; Briggs ME; Cooper AI
    Cryst Growth Des; 2019 Jul; 19(7):3647-3651. PubMed ID: 31303868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework.
    Ju Z; Liu G; Chen YS; Yuan D; Chen B
    Chemistry; 2017 Apr; 23(20):4774-4777. PubMed ID: 28218812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bond-driven controlled molecular marriage in covalent cages.
    Acharyya K; Mukherjee PS
    Chemistry; 2014 Feb; 20(6):1646-57. PubMed ID: 24382644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of Imine Cages into Hydrocarbon Cages.
    Schick THG; Lauer JC; Rominger F; Mastalerz M
    Angew Chem Int Ed Engl; 2019 Feb; 58(6):1768-1773. PubMed ID: 30557460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence.
    Huang HH; Song KS; Prescimone A; Aster A; Cohen G; Mannancherry R; Vauthey E; Coskun A; Šolomek T
    Chem Sci; 2021 Mar; 12(14):5275-5285. PubMed ID: 34163762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation.
    Acharyya K; Mukherjee S; Mukherjee PS
    J Am Chem Soc; 2013 Jan; 135(2):554-7. PubMed ID: 23268653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of the Dynamic Covalent Chemistry of [2 + 3]-Imine Cages.
    Schick THG; Rominger F; Mastalerz M
    J Org Chem; 2020 Nov; 85(21):13757-13771. PubMed ID: 32933246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages.
    Bojdys MJ; Briggs ME; Jones JT; Adams DJ; Chong SY; Schmidtmann M; Cooper AI
    J Am Chem Soc; 2011 Oct; 133(41):16566-71. PubMed ID: 21899280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin Boxes: Rationally Designed Porous Organic Cages.
    Hong S; Rohman MR; Jia J; Kim Y; Moon D; Kim Y; Ko YH; Lee E; Kim K
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13241-4. PubMed ID: 26305107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.
    Xie S; Zhang J; Fu N; Wang B; Hu C; Yuan L
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27834837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonporous Adaptive Crystals of Pillararenes.
    Jie K; Zhou Y; Li E; Huang F
    Acc Chem Res; 2018 Sep; 51(9):2064-2072. PubMed ID: 30011181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.