BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30203918)

  • 21. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers.
    Winnacker M
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14362-14371. PubMed ID: 29757480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of polyesters in transgenic plants.
    Poirier Y
    Adv Biochem Eng Biotechnol; 2001; 71():209-40. PubMed ID: 11217413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.
    Díaz A; Katsarava R; Puiggalí J
    Int J Mol Sci; 2014 Apr; 15(5):7064-123. PubMed ID: 24776758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.
    Matsumoto K; Taguchi S
    Curr Opin Biotechnol; 2013 Dec; 24(6):1054-60. PubMed ID: 23545442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biotechnological production of (R)-3-hydroxybutyric acid monomer.
    Tokiwa Y; Ugwu CU
    J Biotechnol; 2007 Nov; 132(3):264-72. PubMed ID: 17543411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Branched polyesters: Preparative strategies and applications.
    d'Arcy R; Burke J; Tirelli N
    Adv Drug Deliv Rev; 2016 Dec; 107():60-81. PubMed ID: 27189232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lactide Synthesis and Chirality Control for Polylactic acid Production.
    Van Wouwe P; Dusselier M; Vanleeuw E; Sels B
    ChemSusChem; 2016 May; 9(9):907-21. PubMed ID: 27071863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone.
    Todea A; Aparaschivei D; Badea V; Boeriu CG; Peter F
    Biotechnol J; 2018 Jun; 13(6):e1700629. PubMed ID: 29542861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
    Lenz RW; Marchessault RH
    Biomacromolecules; 2005; 6(1):1-8. PubMed ID: 15638495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology.
    Cameron DJ; Shaver MP
    Chem Soc Rev; 2011 Mar; 40(3):1761-76. PubMed ID: 21082079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. His-Tag Immobilization of Cutinase 1 From Thermobifida cellulosilytica for Solvent-Free Synthesis of Polyesters.
    Pellis A; Vastano M; Quartinello F; Herrero Acero E; Guebitz GM
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyhydroxyalkanoate copolymers from forest biomass.
    Keenan TM; Nakas JP; Tanenbaum SW
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):616-26. PubMed ID: 16761168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Retro-biosynthesis-Based Route to Generate Pinene-Derived Polyesters.
    Stamm A; Biundo A; Schmidt B; Brücher J; Lundmark S; Olsén P; Fogelström L; Malmström E; Bornscheuer UT; Syrén PO
    Chembiochem; 2019 Jul; 20(13):1664-1671. PubMed ID: 30793830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzyme-catalysis breathes new life into polyester condensation polymerizations.
    Gross RA; Ganesh M; Lu W
    Trends Biotechnol; 2010 Aug; 28(8):435-43. PubMed ID: 20598389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols.
    Yang Y; Lu W; Zhang X; Xie W; Cai M; Gross RA
    Biomacromolecules; 2010 Jan; 11(1):259-68. PubMed ID: 20000460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks.
    Ba C; Yang J; Hao Q; Liu X; Cao A
    Biomacromolecules; 2003; 4(6):1827-34. PubMed ID: 14606915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyesters from microorganisms.
    Kim YB; Lenz RW
    Adv Biochem Eng Biotechnol; 2001; 71():51-79. PubMed ID: 11217417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systems Metabolic Engineering Strategies for Non-Natural Microbial Polyester Production.
    Lee Y; Cho IJ; Choi SY; Lee SY
    Biotechnol J; 2019 Sep; 14(9):e1800426. PubMed ID: 30851138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed.
    Nakajima H; Dijkstra P; Loos K
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of novel biopolyesters from suberin and model comonomers.
    Sousa AF; Gandini A; Silvestre AJ; Pascoal Neto C
    ChemSusChem; 2008; 1(12):1020-5. PubMed ID: 19040255
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.